Protection and System Calls

Lars Ailo Bongo, Spring 2017
(using slides by Tore Brox-Larsen

Including Original Slides and Adaptations by
Kali LI, Princeton University and
Otto J. Anshus, University of Tromsg

Some HW Platforms

« Low-End Mobile Phone
— One processor: Single or multi core

e Other

— One or more processors, multiple or many single- or multiple
threaded cores

« Our projects address the case of a single single-
threaded processor!

INF-2201, Tore Brox-Larsen 2

Environment

* Many concurrently running “processes’

— Each assuming “exclusive” access to the whole computer
(”’Mine, all mine™)

— But typically also:
 Shielded from some HW-specific peculiarities
 Access to services provided by OS
 Protected from stumbling onto other processes and OS
« Ability to communicate and coordinate with other processes

 Explicit and implicit sharing and protection of
computer resources

% INF-2201, Tore Brox-Larsen

Processes

e “A program under execution”

— Contains one or more threads
« Thread—FIlow of execution, control flow—Unit of execution

— Single-threaded: Contains one control thread representing the
execution of a sequential program

— Multi-threaded: Contains one or more control threads
representing a parallel program

e Unit of resource allocation

— Threads within any process share all resources except
processor registers

% INF-2201, Tore Brox-Larsen 4

OS Provides Protection

CPU protection
— Preventing users from using the CPU for too long

Memory protection
— Prevent users from modifying kernel code and data structures
1/O protection

— Prevent users from performing illegal I/O’s

File system protection
— Preventing unauthorized use of file

6911813»0
ge* Kai Li INF-2201, Tore Brox-Larsen 5
¢’RONl°-‘¢

Basic HW Protection Mechanisms (i)

« Two (or more) privilege levels

— Highest privilege level
* ”Anything 1s allowed”

— Lowest privilege level
« Only what can be safely done by anyone is available

* Privilege level switch mechanisms?
« How are privilege levels applied?

INF-2201, Tore Brox-Larsen

User/Kernel Mode

User mode

— Regular Instructions

— Access user-mode memory

— Illegal attempts causes faults/exceptions

Kernel (supervisor, privileged) mode

— Regular instructions

— Privileged instructions

— Access both user- and kernel-mode memory
— An instruction to change to user mode

s‘&i’% INF-2201, Tore Brox-Larsen
vy

Examples of Privileged Instructions

Setting up memory address mappings
Flushing cache, invalidating cache
Invalidating TLB

Setting system registers

1/O operations

— Memory mapped 1/O uses unprotected move
Instructions. Protection is provided through the
mechanisms for memory protection

INF-2201, Tore Brox-Larsen

Possible Use of Intel Privilege Levels

The privileged instructions

How to switch between Protection Rings can only be executed when
privilege levels, i.e. current privilege level (CPL)
increasing/decreasing is 0

privilege?

Using two or four levels,
advantages/disadvantages?

Crperating
SyEiem
Karnel

Dperating System
Senvices

Applications

% INF-2201, Tore Brox-Larsen 9

2716=0-FFFFh
8-bit ports
2*8=16 bit port

1/0

|/ O pOI"[S: 4*16=32 bit port
e created in system HW for com. w/peripheral devices
« Examples

— connects to a serial device
— connects to control registers of a disk controller

/O address space A
]] ~ Will look at this and

 |/O Instructions memory mapped 1/O

— in, out: between ports and registers later ,

— Ins, outs: between ports and memory locations

* 1/O protection mechanism
— 1/O Privilege Level (IOPL): I/O instr. only from Ring Level 0 or
1 (typical)
— 1/O permission bit map: Gives selective control of individual
ports

INF-2201, Tore Brox-Larsen 10

Qgﬁslrﬁ

IMtEerrupes are Ihnpoeramic

User-mode
eInterrupt,
«User system call, Return to user-
*User-mode trap mode

Interrupt,
*Kernel system call

*Kernel-mode trap

INF-2201, Tore Brox-Larsen 11

Basic HW Protection Mechanisms (i)

Memory protection

— Provided by a ’memory management unit (MMU),”
conceptually a level of logic between the processor and
memory. Privileged instructions set restrictions on how
regions in memory address space may be accessed. MMU
traps when instructions attempt to break the restrictions —
The trap invokes the operating system
+new support for not execute

Atomic ReadWrite
— Uninterrupted read/write of memory address
— Supports cooperative coordination

ge*’* INF-2201, Tore Brox-Larsen 12
e

Some Currently Ditched HW Protection
Mechanisms

Tagged architectures

Capability based architectures

Object oriented architectures

Support for fine-grained memory segmentation

May or may not remain ditched. May or may
not be reintroduced in original or modified
form

INF-2201, Tore Brox-Larsen

13

Table 2-2. Summary of System Instructions

Useful to Protected from
Instruction Description Applicatlon? Application?

LLDT Load LDT Register No Yos
SLDT Store LDT Register No No
LGDT Load GDT Register No Yes
SGDT Store GDT Register No No
LTR Load Task Register No Yos
STRH Store Task Reglster No No
LIDT Load IDT Reglster No Yes
SIDT Store IDT Register No No
MOV CRn Load and store control registers Yeos Yes (load only)
SMSW Store MSW Yes No
LMSW Load MSW No Yes
CLTS Clear TS flag in CRO No Yos
ARPL Adjust RPL Yos! No
LAR Load Access Rights Yes No
LSL Load Segment Limit Yes No

INF-2201, Tore Brox-Larsen

Table 2-2. Summary of System Instructions (Contd.)

Useful to Protected from
Instruction Description Application? Application?

VERR Verify for Reading Yes No

VERW Verify for Writing Yos No

MOV DBn Load and store debug registers No Yes
INVD Invalidate cache, no writeback No Yes
WBINVD Invalidate cache, with writeback No Yes
INVLPG Invalldate TLB entry No Yes
HLT Halt Processor No Yes
LOCK {Prefix) Bus Lock Yes No

RSM Retum from system management mode No Yes
RDMSR3 Read Model-SpecHic Registers MNo Yes
WRMSH? Wrte Model-SpecHic Registers MNo Yes
RDPMC* Read Performance-Monitering Counter Yes Yes?
RDTSC? Read Time-Stamp Counter Yos Yos?

INF-2201, Tore Brox-Larsen

Intel Pentium Protection Checks

Limit checks

ype checks

Restriction of addressable domain
Restriction of procedure entry-points
Restriction of Instruction set
Violations cause exceptions!

INF-2201, Tore Brox-Larsen

16

Processes & OS: Where Is the OS executing:
Separate Kernel

INF-2201, Tore Brox-Larsen 17

OS-Functions Executing within Processes

INF-2201, Tore Brox-Larsen

18

OS-Functions Executing In
Separate Processes

INF-2201, Tore Brox-Larsen

0S,

0S,

0S,

19

System Call Mechanism

User code can be arbitrary

_ User User
User code cannot modify kernel | program program
memory =T —
Makes a system call with ?’@

parameters

The call mechanism switches
code to kernel mode

Execute system call / protected memory
Return with results

But HOW in a

69%81)»
50%“ Kai Li/OJA INF-2201,| secure way? 20
¢’RONl°-‘¢

System Call Implementation

* Use an “interrupt”

e Hardware devices (keyboard, serial port, timer, disk,...)
and software can request service using interrupts

« The CPU is interrupted
e ...and a service handler routine is run

e ...when finished the CPU resumes from where it was
Interrupted (or somewhere else determined by the OS
kernel)

ge*’* INF-2201, Tore Brox-Larsen 21
e

HW Device
Interrupt

System Service Call

HW exceptions

SW exceptions

Virtual address

exceptions

//////'

Sys_call_table

System serv
dispatcher

Interrupt
service

routines

|

System
services

OS Kernel: Trap Handler

Exception
dispatcher

A 4

VM manager’s
pager

sag HW implementation of the boundary |NF-2201, Tore Brox-Larsen

A 2)
“RoM?

Exception
handlers

22

Passing Parameters

e Passing in registers
 Simplest but limited

 Passing in a vector

* A register holds the
address of the vector

 Passing on the stack

 Push: library
« Pop: System

INF-2201, Tore Brox-Larsen

Kernel has access to callers
address space, but not vice
versa

Top

frame

frame

23

The Stack

Slack Segrend -Mapy“stacks Q?ssible, bgt only
Battam of Stack one 1s “current”: the one in the
™ finltial 5P Value) segment referenced by the SS
register
lﬂml *Max size 4 gigabytes
P The Stack an Be *PUSH: write (--ESP);
16 or 2 Bitn 'Wide ' ’
*POP: read(ESP++);
Fernmstrs *\When setting up a stack
Famsad kK Tha EGP ragletw b remember to align the stack
e Iypiaaly oot 1o poi . . .
Proceds b0 tve TS pointer on 16 bit word or 32 bit
Fratte Boudey | Inatrction poinker. double-word boundaries
- — E&P Ragistey
Top of Slak
Pughas kiove Tha Pope: kiowe tha
Top O Binck ko Top OF Binck ko
Liwast Aclrbiole Highet Ackirss

Flgure 1. Steok Structure 24

Issues In System Call Mechanism

» Use caller’s stack or a special stack?

— Use a special stack

Use a single entry or multiple entries
— A single entry is simpler

* System calls with 1, 2, 3, ... N arguments

— Group system calls by # of args

 Can kernel code call system calls?

RSI,

SEE, L

-T; = Kal LI
(V]

“RoM?

— Yes and should avoid the entry

INF-2201, Tore Brox-Larsen

25

Library Stubs for System Calls

 read(fd, buf, size)

Int read(int fd, char * buf, int size)

{
move READ to R,

32-255 availal
to user

le move fd, buf, sizeto R, R,, R,

- int $0x80

/oad result codeftom R,
}

Return when
work is done

Could be an error

code

INF-2201, Tq

User
User memory
stack
Registers
|
Registers
Kernel
stack Kernel
memory
Win NT: 2E
Linux: 80

26

int 0x80

« Assume passing parameters in

registers
EntryPoint: Kernel
SW switch to kernel stack; | Mode:
interrupt] Total
save all registers; control.
if legal(R,) call sys_call_gpdle[R,];
i interrupts
restore user registers; are
switch to user stack; disabled

iret;

System Call Entry Point

User
User memory
stack
Registers
|
Registers
Kernel
stack Kernel
memory

INF-2201, Tore Brox-Larsen

27

int 0x80

System Call Entry Point

« Assume passing parameters in
registers U User
ser
. memor
-~ EntryPoint: Kernel stack y
switch to kernel stack; | Mode: :
interrupt _ Total Registers
save all registers; control.
if legal(R,) call sys_call_gpdle[R,]; :
: interrupts Registers
restore user registers; are
switch to user stack; disabled Kernel
. stack Kernel
iret;
memory
Change to user mode _
i, and return Put results into buf Or: User stack
J8%° Kai Li/OJA INF-220 Or: some register

int 0x80

System Call Entry Point

« Assume passing parameters in
registers
EntryPoint:

- Save/Restore Context?
SW switch to kernel stack:

interrupt i
save all registers;

iIf legal(R,) call sys_call_gable{R,]. — If this code takes a long time: should
restore user registers; ENABLE interrupts

switch to user stack:

iret; READ returns with result and
handler must return them to user

Or SCHEDULE to run another

3 : Kai Li/OJA INF-2201, Tore Brox-Larsen

29

Polling Instead of Interrupt?

« OS kernel could check a request queue instead

of using an interrupt?
» Waste CPU cycles checking

« All have to wait while the checks are being done
« When to check?

— Non-predictable
— Pulse every 10-100ms?

But used for Servers

» too long time

« Same valid for HW Interrupts vs. Polling

SRS,

ge‘%_g INF-2201, Tore Brox-Larsen

- (]
“RoM?

Interrupts and Exceptions

Due to bugs in current

 Processor exceptions .————— [runningprocess

 MMU address faults, divide by zero, etc

« 386: the first 32 “interrupt descriptor table” entries are
special descriptors, trap gates, mapping exceptions to
handler code

* Interrupts from hardware

« slow: int ON, usual, timer
» fast: int OFF, less complex, keyboard

* Interrupts from software: sys calls

ge*’* INF-2201, Tore Brox-Larsen 31

- (]
“RoM?

System Calls
 Process management
e end, abort , load, execute, create, terminate, set, wait

 Memory management

* mmap & munmap, mprotect, mremap, msync, swapon &
off,

* File management
* Create, delete, open, close, R, W, seek

« Device management
e res, rel, R, W, seek, get & set atrib., mount, unmount

« Communication

» get ID’s, open, close, send, receive
Kai Li INF-2201, Tore Brox-Larsen 32

