
Protection and System Calls

Lars Ailo Bongo, Spring 2017
(using slides by Tore Brox-Larsen

Including Original Slides and Adaptations by

Kai Li, Princeton University and

Otto J. Anshus, University of Tromsø

INF-2201, Tore Brox-Larsen 2

Some HW Platforms

• Low-End Mobile Phone
– One processor: Single or multi core

• Other
– One or more processors, multiple or many single- or multiple

threaded cores

• Our projects address the case of a single single-
threaded processor!

INF-2201, Tore Brox-Larsen 3

Environment

• Many concurrently running “processes”

– Each assuming ”exclusive” access to the whole computer
(”Mine, all mine”)

– But typically also:

• Shielded from some HW-specific peculiarities

• Access to services provided by OS

• Protected from stumbling onto other processes and OS

• Ability to communicate and coordinate with other processes

• Explicit and implicit sharing and protection of
computer resources

INF-2201, Tore Brox-Larsen 4

Processes

• “A program under execution”

– Contains one or more threads

• Thread—Flow of execution, control flow—Unit of execution

– Single-threaded: Contains one control thread representing the
execution of a sequential program

– Multi-threaded: Contains one or more control threads
representing a parallel program

• Unit of resource allocation

– Threads within any process share all resources except
processor registers

INF-2201, Tore Brox-Larsen 5

OS Provides Protection

• CPU protection

– Preventing users from using the CPU for too long

• Memory protection

– Prevent users from modifying kernel code and data structures

• I/O protection

– Prevent users from performing illegal I/O’s

• File system protection

– Preventing unauthorized use of file

Kai Li

INF-2201, Tore Brox-Larsen 6

Basic HW Protection Mechanisms (i)

• Two (or more) privilege levels

– Highest privilege level

• ”Anything is allowed”

– Lowest privilege level

• Only what can be safely done by anyone is available

• Privilege level switch mechanisms?

• How are privilege levels applied?

INF-2201, Tore Brox-Larsen 7

User/Kernel Mode

• User mode

– Regular Instructions

– Access user-mode memory

– Illegal attempts causes faults/exceptions

• Kernel (supervisor, privileged) mode

– Regular instructions

– Privileged instructions

– Access both user- and kernel-mode memory

– An instruction to change to user mode

INF-2201, Tore Brox-Larsen 8

Examples of Privileged Instructions

• Setting up memory address mappings

• Flushing cache, invalidating cache

• Invalidating TLB

• Setting system registers

• I/O operations

– Memory mapped I/O uses unprotected move
instructions. Protection is provided through the
mechanisms for memory protection

INF-2201, Tore Brox-Larsen 9

Possible Use of Intel Privilege Levels

How to switch between

privilege levels, i.e.

increasing/decreasing

privilege?

Using two or four levels,

advantages/disadvantages?

The privileged instructions

can only be executed when

current privilege level (CPL)

is 0

INF-2201, Tore Brox-Larsen 10

I/O
• I/O ports:

• created in system HW for com. w/peripheral devices

• Examples

– connects to a serial device

– connects to control registers of a disk controller

• I/O address space
• I/O instructions

– in, out: between ports and registers

– ins, outs: between ports and memory locations

• I/O protection mechanism

– I/O Privilege Level (IOPL): I/O instr. only from Ring Level 0 or
1 (typical)

– I/O permission bit map: Gives selective control of individual
ports

Will look at this and

memory mapped I/O

later

2^16=0-FFFFh

8-bit ports

2*8=16 bit port

4*16=32 bit port

INF-2201, Tore Brox-Larsen 11

User-mode

Kernel-mode

Return to user-

mode

•Interrupt,

•Kernel system call

•Kernel-mode trap

•Interrupt,

•User system call,

•User-mode trap

INF-2201, Tore Brox-Larsen 12

Basic HW Protection Mechanisms (ii)

• Memory protection
– Provided by a ”memory management unit (MMU),”

conceptually a level of logic between the processor and
memory. Privileged instructions set restrictions on how
regions in memory address space may be accessed. MMU
traps when instructions attempt to break the restrictions –
The trap invokes the operating system
+new support for not execute

• Atomic ReadWrite
– Uninterrupted read/write of memory address

– Supports cooperative coordination

INF-2201, Tore Brox-Larsen 13

Some Currently Ditched HW Protection

Mechanisms

• Tagged architectures

• Capability based architectures

• Object oriented architectures

• Support for fine-grained memory segmentation

• May or may not remain ditched. May or may

not be reintroduced in original or modified

form

INF-2201, Tore Brox-Larsen 14

INF-2201, Tore Brox-Larsen 15

INF-2201, Tore Brox-Larsen 16

Intel Pentium Protection Checks

• Limit checks

• Type checks

• Restriction of addressable domain

• Restriction of procedure entry-points

• Restriction of instruction set

• Violations cause exceptions!

INF-2201, Tore Brox-Larsen 17

Processes & OS: Where is the OS executing:

Separate Kernel

Kernel

P1 P2 P3 P4 P5 Pn

INF-2201, Tore Brox-Larsen 18

OS-Functions Executing within Processes

Process Switching

P1 P2 P3 P4 P5 Pn

OS-

Funct

ions

OS-

Funct

ions

OS-

Funct

ions

OS-

Funct

ions

OS-

Funct

ions

OS-

Funct

ions

INF-2201, Tore Brox-Larsen 19

OS-Functions Executing in

Separate Processes

Process Switching

P1 P2 P3 P4 P5 OS1 OS2 OSn

INF-2201, Tore Brox-Larsen 20

System Call Mechanism

• User code can be arbitrary

• User code cannot modify kernel

memory

• Makes a system call with

parameters

• The call mechanism switches

code to kernel mode

• Execute system call

• Return with results

Kernel in

protected memory

entry

User

program

User

program

Kai Li/OJA

But HOW in a

secure way?

INF-2201, Tore Brox-Larsen 21

System Call Implementation

• Use an “interrupt”
• Hardware devices (keyboard, serial port, timer, disk,…)

and software can request service using interrupts

• The CPU is interrupted

• ...and a service handler routine is run

• …when finished the CPU resumes from where it was

interrupted (or somewhere else determined by the OS

kernel)

INF-2201, Tore Brox-Larsen 22

OS Kernel: Trap Handler

HW Device

Interrupt

HW exceptions

SW exceptions

System Service Call

Virtual address

exceptions

HW implementation of the boundary

System service

dispatcher
System

services

Interrupt

service

routines

Exception

dispatcher
Exception

handlers

VM manager’s

pager

Sys_call_table

INF-2201, Tore Brox-Larsen 23

Passing Parameters

• Passing in registers
• Simplest but limited

• Passing in a vector
• A register holds the

address of the vector

• Passing on the stack
• Push: library

• Pop: System

frame

frame

Top

Kai Li

Kernel has access to callers

address space, but not vice

versa

INF-2201, Tore Brox-Larsen 24

The Stack

•Many stacks possible, but only

one is “current”: the one in the

segment referenced by the SS

register

•Max size 4 gigabytes

•PUSH: write (--ESP);

•POP: read(ESP++);

•When setting up a stack

remember to align the stack

pointer on 16 bit word or 32 bit

double-word boundaries

INF-2201, Tore Brox-Larsen 25

Issues in System Call Mechanism

• Use caller’s stack or a special stack?

– Use a special stack

• Use a single entry or multiple entries

– A single entry is simpler

• System calls with 1, 2, 3, … N arguments

– Group system calls by # of args

• Can kernel code call system calls?

– Yes and should avoid the entry

Kai Li

INF-2201, Tore Brox-Larsen 26

Library Stubs for System Calls

• read(fd, buf, size)

int read(int fd, char * buf, int size)

{

move READ to R0

move fd, buf, size to R1, R2, R3

int $0x80

load result code from Rresult

}

User

stack

Registers

User

memory

Kernel

stack

Registers

Kernel

memory

Kai L/OJA

Return when

work is done

Could be an error

code

32-255 available

to user

Win NT: 2E

Linux: 80

INF-2201, Tore Brox-Larsen 27

System Call Entry Point

User

stack

Registers

User

memory

Kernel

stack

Registers

Kernel

memory

• Assume passing parameters in

registers

EntryPoint:

switch to kernel stack;

save all registers;

if legal(R0) call sys_call_table[R0];

restore user registers;

switch to user stack;

iret;

Kai Li/OJA

int 0x80

SW

interrupt

Kernel

Mode:

Total

control.

All

interrupts

are

disabled

INF-2201, Tore Brox-Larsen 28

System Call Entry Point

User

stack

Registers

User

memory

Kernel

stack

Registers

Kernel

memory

• Assume passing parameters in

registers

EntryPoint:

switch to kernel stack;

save all registers;

if legal(R0) call sys_call_table[R0];

restore user registers;

switch to user stack;

iret;

Kai Li/OJA

int 0x80

SW

interrupt

Put results into buf Or: User stack

Or: some register

Change to user mode

and return

Kernel

Mode:

Total

control.

All

interrupts

are

disabled

INF-2201, Tore Brox-Larsen 29

System Call Entry Point

• Assume passing parameters in

registers

EntryPoint:

switch to kernel stack;

save all registers;

if legal(R0) call sys_call_table[R0];

restore user registers;

switch to user stack;

iret;

Kai Li/OJA

int 0x80

SW

interrupt

Save/Restore Context?

If this code takes a long time: should

ENABLE interrupts

READ returns with result and

handler must return them to user

Or SCHEDULE to run another

INF-2201, Tore Brox-Larsen 30

Polling instead of Interrupt?

• OS kernel could check a request queue instead

of using an interrupt?
• Waste CPU cycles checking

• All have to wait while the checks are being done

• When to check?

– Non-predictable

– Pulse every 10-100ms?

» too long time

• Same valid for HW Interrupts vs. Polling

But used for Servers

INF-2201, Tore Brox-Larsen 31

Interrupts and Exceptions

• Processor exceptions
• MMU address faults, divide by zero, etc

• 386: the first 32 “interrupt descriptor table” entries are

special descriptors, trap gates, mapping exceptions to

handler code

• Interrupts from hardware
• slow: int ON, usual, timer

• fast: int OFF, less complex, keyboard

• Interrupts from software: sys calls

Due to bugs in current

running process

INF-2201, Tore Brox-Larsen 32

System Calls
• Process management

• end, abort , load, execute, create, terminate, set, wait

• Memory management
• mmap & munmap, mprotect, mremap, msync, swapon &

off,

• File management
• create, delete, open, close, R, W, seek

• Device management
• res, rel, R, W, seek, get & set atrib., mount, unmount

• Communication
• get ID’s, open, close, send, receive

Kai Li

