Operating Systems Structure
and
Processes

Lars Ailo Bongo
Spring 2017
(using slides by
Otto J. Anshus
University of Tromsg/Oslo)

The Architecture of an OS

« Monolithic

 Layered

 Virtual Machine, Library, Exokernel
« Micro kernel and Client/Server

« Hybrids

21.01.16 INF-2201, Tore Brox-Larsen

Goals of the architecture

« OS as Resource Manager
» OS as Virtual Machine (abstractions)

» Efficiency, flexibility, size, security, ...

discussed earlier

T,
50: 21.01.16 INF-2201, Tore Brox-Larsen

dasS

Operating System Use of Processes:
Where Is the OS executing?

Illustrations: Stallings:
Operating System:
Separate Kernel Internals and Design

égﬁslré\
@ 210116 INF-2201, Tore Brox-Larsen 4

“RoM?

OS-Functions Executing within Processes

S@RSI]%\A
@ 210116 INF-2201, Tore Brox-Larsen

TRoM?

OS-Functions Executing In
Separate Processes

&RSI]%\
@ 210116 INF-2201, Tore Brox-Larsen

“RoM?

User
process

(N

(N

(N

Service

Operating
Interrupt handler: System
Start requested service Kernel
Start (next?) user program
Services
Interrupt
Hardware overhend
b\ Data from ‘UL -> KL
fﬁ 21.01.16 network UL address space -> UL addr. space

is (V]
“RoM?

Monolithic

 All kernel routines are User User
together program program
« A system call interface TG =
YN
« Examples:
— Linux _entry
— Most Unix OS Kernel
— NT (hybrid) many many things

6911813»0
@ 210116 INF-2201, Tore Brox-Larsen 8

“RoM?

Layered Structure

 Hiding information at

each layer Level N
 Develop a layer at a time '
« Examples Level 2
— THE (6 layers,
semaphores, Dijkstra Level 1
1968)
— MS-DOS (4 layers) Hardware

6911813»0
@ 210116 INF-2201, Tore Brox-Larsen

“RoM?

Microkernel and Client/Server

. 1s “micro” User
 Services are implemented program

Services

as user level processes

» Micro-kernel get services
on behalf of users by
messaging with the service
processes

« Example: -, :

u—kernel

(hybrid)

21.01.16 INF-2201, Tore Brox-Larsen

10

https://en.wikipedia.org/wiki/Microkernel
http://en.wikipedia.org/wiki/L4_microkernel_family
http://en.wikipedia.org/wiki/Nucleus_RTOS
http://www.hpl.hp.com/techreports/Compaq-DEC/SRC-RR-117.pdf
http://www.cs.cmu.edu/afs/cs.cmu.edu/project/mach/public/www/mach.html
http://en.wikipedia.org/wiki/Mach_(kernel)
http://en.wikipedia.org/wiki/Windows_nt

Virtual Machine

"A running program is often referred to as a virtual machine - a machine that doesn't
exist as a matter of actual physical reality. The virtual machine idea is itself one of the
most elegant in the history of technology and is a crucial step in the evolution of ideas
about software. To come up with it, scientists and technologists had to recognize that
a computer running a program isn't merely a washer doing laundry. A washer is a
washer whatever clothes you put inside, but when you put a new program in a
computer, it becomes a new machine.... The virtual machine: A way of understanding
software that frees us to think of software design as machine design."

From) ;" Discover
Magazine, September 1997, p. 72.

Qgﬁslrﬁ

?ej 21.01.16 INF-2201, Tore Brox-Larsen 11

https://en.wikipedia.org/wiki/David_Gelernter
http://discovermagazine.com/1997/sep/truthbeautyandth1217

Virtual Kernel

Mode
Virtual Machine
Virtual User
Mode
]]] User Mode /
* Virtual machine monitor
— provide multiple virtual “real”
hardware user user
— run different OS codes
e E | OSl OSn | || Syscall
Xamp € T §| trapped
— [: Started in the VMl t VMn Privileged
70°s instructions
o trapped
— Java VM
— VMware Bare hardware Kernel
_ Mode
Exact copies of
g’ff“ 21 0116 the bare hardware 19

http://www.research.ibm.com/journal/rd/255/ibmrd2505M.pdf
http://en.wikipedia.org/wiki/VM/CMS
http://www.beagle-ears.com/lars/engineer/comphist/ibm360.htm
http://www.multicians.org/thvv/360-67.html
http://pdos.csail.mit.edu/exo.html

Input/ Output

.- - € wem

Virtual 8086

ANEW QLD IDEA PENTIUM VIETUAL 5056 MODE

Virhnal 2025 Wirhal 256 Virhal 2025

+ Viartual 8086 mode on the Pentium malces 1t possible to
run old 1 6-bit DOS applicatons on a wirtual machine

Qgﬁslrﬁ

?‘e'% 21.01.16 INF-2201, Tore Brox-Larsen
(%]

Java VM

Programmer writes
the J&WA program.

JANA Source
Jawa Program The JAWVA compiler generates

AR RO L O0n T Jaa Compiler the byte codes that cormespond

tothe instructions inthe program.

Byte Codes

The MM interprets the
JANA Virtual Machine stream DTIJ';.I‘[E’CDEI!E and
execides the instructions.

Instructions

Output

-.L_H_R_‘"—h-«_._‘_ Hardware Platform and

COperating System

Ref.

The systemn receives
instructions fram JJM
and displays desired
information'output.

Figure 1.1: Diagram of Java Program Execution

S@RSI]%\A
eaﬁ 21.01.16 INF-2201, Tore Brox-Larsen

http://en.wikipedia.org/wiki/UCSD_p-System

Exokernel Architecture

25C Fast.www
...... AR
TS “Www Net libUnix
: subset

‘6““1}0&

ge:* 21.01.16 INF-2201, Tore Brox-Larsen

Hardware Support

« What is the minimal support?

« 2 modes
« Exception and interrupt trapping

 Can virtual machine be protected without such
support?
* Yes, emulation instead of executing on real machine

RS,
SRR,

@ 210116 INF-2201, Tore Brox-Larsen

7 RON“F

Monolithic

«Performance

eL_ess structured

Layered

Clean, less bugs

«Clear division of
labour

*Are layers really
sepaparated?

«Performance
issues?

VM

*Many virtual
computers with
different OS’es

*Test of new OS
while production
work continues

«All in all:
flexibility

«Performance
Issues?

«Complexity
issues?

Pro et Contra

C/S

«Clear division of
labour

«Performance
Issues?

Micro kernel

More flexible

*Small means less
bugs+manageable

*Distributed systems

eFailure isolation of
services at Kernel Level

Flexibility issues?

«Performance issues?

“Truths” on Micro Kernel Flexibility and
Performance

« A micro kernel restricts application level flexibility.
« Switching overhead kernel-user mode is inherently expensive.

« Switching address-spaces is costly. Z NO: Can be <50 cycles

« |IPC Is expensive.

- - O N NO: 6-20 microsec round-trip,
 Micro kernel architetturesTeaere=asa2 =" 53-500 cycles/IPC one way

>4 7"

« Kernel should be portable (on top of a small hardware-
dependent layer).

Taken from . SOSP 15
@ 210116 paper:

http://i30www.ira.uka.de/aboutus/inmemoriam/liedtke/
http://portal.acm.org/citation.cfm?id=224075

Concurrency and Process

 Problem to solve

— A shared CPU, many 1/O devices and lots of
Interrupts

— Users feel they have machine to themselves

o Strategy
— Decompose hard problems into simple ones
— Deal with one at a time
— Process Is such a unit

T,
: 21.01.16 INF-2201, Tore Brox-Larsen 20

Flow of Execution

(Assume R to disk

. => |ong wait 10-
- IntOx80 100’s ms)

P1: Input syscall <—

Trap handling;
Scheduler;
Dispatch;

P2: CPU bound “Input finished” interrupt

Kernel Mode
LD e e e - (Could have started another
Scheduler; Dispateh; process than P1)
User Mode
P1: CPU bound
- Timer 10-100ms
Trap handling;
Scheduler;
Dispatch;

QQBSI]%\

A
.ew. 21.01.16 21

Procedure, Co-routine, Thread, Process

 Procedure, Function, (Sub)Routine
» Call-execute all-return nesting

- User level non preemptive “scheduler”
« Co-routine /in user code

e Call-resumes-return

» Thread (more later)

* Process
— Single threaded |
— Multi threaded |||

21.01.16 INF-2201, Tore Brox-Larsen 22

Procedure and Co-routine

Main A B
l | ’/v 1
Call A; call B: -~ “User Yield when finished”
l \ T~
l Return
Call B; / 2
|
Return
Main A B
!
Call A: — b .
CallB;~ | ResumeA; “User Yield during execution
l \ // to share CPU”
Resume B, 7 IResume A;
. - « Never executed

SIS Return
2 ®
.ew. 21.01.16 23

Process

« Sequential execution of operations
— No concurrency inside a (single threaded) process
— Everything happens sequentially

* Process state
— Registers
— Stack(s)
— Main memory
— Open files in UNIX
— Communication ports
— Other resources

RS,
SRR,

@ 210116 INF-2201, Tore Brox-Larsen

7 RON“F

Program and Process

For at least one
thread of executi

"""""""""""""""""""" ! main () “;
PID :
I main () ‘: i { i
{ L heap |
: . f :
.. 0o () stack i
foo () - main i
;) } foo :
.1 foo() registers | % N
- | N e
foo () { PC ' context
{ : - |
i } Resources: |
i : comm. ports, | !
} ! files,
\ Prog ram ; semaphores
S —— S Process i

6911813»0

Process vs. Program

e Process > program
— Program is just part of process state
— Example: many users can run the same program

* Process < program
— A program can invoke more than one process
— Example: Fork off processes to lookup webster

@ 210116 INF-2201, Tore Brox-Larsen

“RoM?

26

Instruction Pointer

(program counter) in the PrOCeSS Sta‘te Transrtlons

EIP reglster

User Level Processes

’ ’ ‘ MULTIPROGRAMMING

*Uniprocessor: Interleaving

KERNEL (“pseudoparallelism™)

Trap Service *Multiprocessor: Overlapping (“true
Handler / paralellism”)
Trap Return
Handler BlockedQueue

l
Scheduler ReadyQueue terminate

| J

| >

Dispatcher Current = <74

%
V //;n
<.

Create
a process

Memory resident part Blocked

SRSl Resource becomes
&: 210116 INF-2201, Tore Brox-Larsen available 27

Process State Transition

& terminate

Create
a process

Resource becomes
avallable

RS,
SRR,

@ 210116 INF-2201, Tore Brox-Larsen

7 RON“F

Process Control Block (Process Table)

 What

— Process management info
« State (ready, running, blocked)
 Registers, PSW, parents, etc

— Memory management info
« Segments, page table, stats, etc

— 1/O and file management
« Communication ports, directories, file descriptors, etc.

RS,
SRR,

ee‘% 21.01.16 INF-2201, Tore Brox-Larsen
s

Discussion: What needs to be saved and restored
on a context switch?

e Volatile state

 Program counter (Program Counter (PC) also called Instruction
Pointer (Intel: EIP))

Processor status register
Other register contents
User and kernel stack pointers

A pointer to the address space in which the process runs
 the process’s page table directory

6911813»0
@ 210116 INF-2201, Tore Brox-Larsen 30

6911813»0

...and how?

« Save(volatile machine state, current process);
 Load(another process’s saved volatile state);
 Start(new process);

@ 210116 INF-2201, Tore Brox-Larsen

“RoM?

31

Threads and Processes

Trad. Threads Project Opsys

Processes in individual address spaces

Process Q Q Q
Kernel threads
—— User Level

Threads Kernel -
Address | l ll
Space

4& ’L 0116 Kernel Level

7 Rorf"@

Virtual machine

Exokernel

« THE

. L4

- VM

21.01.16

Some Links

INF-2201, Tore Brox-Larsen

33

https://en.wikipedia.org/wiki/Virtual_machine
http://pdos.lcs.mit.edu/exo.html
http://www.cs.utexas.edu/users/EWD/ewd01xx/EWD196.PDF
http://os.inf.tu-dresden.de/L4/overview.html
http://www.vm.ibm.com/

