
Threads and Critical Sections

Otto J. Anshus, Thomas Plagemann,
Tore Brox-Larsen, Kai Li

Thread and Address Space

• Thread
– A sequential execution stream within a process

(also called lightweight process)
• Address space

– All the state needed to run a program
– Provide illusion that program is running on its own

machine (protection)
– There can be more than one thread per address

space

2/2/2017 2Tore Brox-Larsen, Universitetet i
Tromsø

Concurrency, Composition, and Threads

• I/O devices
– Overlap I/Os with I/Os and computation (modern OS

approach)
• Compositional Tool

– Doing multiple things “at the same time” on the machine:
Web browser

• Distributed systems
– Client/server computing: NFS file server

• Multiprocessors
– Multiple CPUs sharing the same memory: parallel program

2/2/2017 3Tore Brox-Larsen, Universitetet i
Tromsø

Concurrency: Double buffering

Put (t,g)

/* Copy */
t := s;

Input sequence f

Output sequence g

Get (s,f) s

t

Get(s,f);

Repeat

Copy;

cobegin

Put(t,g);

Get(s,f);

coend;

until completed;

/* Fill s and empty t concurrently */

•Put and Get are disjunct

•… but not with regards to Copy!

(Threads)

Specifies
concurrent
execution

2/2/2017 4Tore Brox-Larsen, Universitetet i
Tromsø

Concurrency: Time Dependent Errors

Repeat

cobegin

Copy;

Put(t,g);

Get(s,f);

coend;

until completed;

Repeat

Copy;

cobegin

Put(t,g);

Get(s,f);

coend;

until completed;

•C-P-G

•C-G-P

•P-C-G

•P-G-C

•G-C-P

•G-P-C

The rightmost
(incorrect)
solution can be
executed in 6
ways:

Interleaving!

In the correct solution we solved the
problem of sharing of the buffers
between Copy and Put/Get by
designing an algorithm avoiding
problems

Mini assignment: are both solutions correct? What can happen?

2/2/2017 5Tore Brox-Larsen, Universitetet i
Tromsø

Typical Thread API

• Creation
– Fork, Join

• Mutual exclusion
– Acquire (lock), Release (unlock)

• Condition variables
– Wait, Signal, Broadcast

• Alert
– Alert, AlertWait, TestAlert

•Difficult to use

•Not good: Combines
specification of
concurrency (Fork)
with synchronization
(Join)

2/2/2017 6Tore Brox-Larsen, Universitetet i
Tromsø

Fork/Join

P1:

….

FORK T1;

….

JOIN T1;

….

T1:

….

END;

P1 must
WAIT
until T1
finishes

Executes concurrently

P1:

….

FORK T1;

FORK T2;

FORK T3;

….

JOIN;

….

T1:

….

END;
T2:

….

END;
T3:

….

END;
JOIN whom??

2/2/2017 7

User vs. Kernel-Level Threads

• Question
– What is the difference between user-level and

kernel-level threads?
• Discussions

– When a user-level thread is blocked on an I/O
event, the whole process is blocked

– A context switch of kernel-threads is expensive
– A smart scheduler (two-level) can avoid both

drawbacks

2/2/2017 8Tore Brox-Larsen, Universitetet i
Tromsø

User vs. Kernel Threads

KERNEL

Thread Package

Threads
Threads

Thread PackageProcess “Package”

9

Recall last week: PCB resp. PT

• Which information has to be stored/saved for
a process?

2/2/2017 10Tore Brox-Larsen, Universitetet i
Tromsø

Thread Control Block

• Shared information
– Processor info: parent process, time, etc
– Memory: segments, page table, and stats, etc
– I/O and file: comm ports, directories and file

descriptors, etc
• Private state

– State (ready, running and blocked)
– Registers
– Program counter
– Execution stack

2/2/2017 11Tore Brox-Larsen, Universitetet i
Tromsø

System Stack for Kernel Threads

• Each kernel thread has
– a user stack
– a private kernel stack

• Pros
– concurrent accesses to

system services
– works on a

multiprocessor
• Cons

– More memory

• Each kernel thread has
– a user stack
– a shared kernel stack

with other threads in the
same address space

• Pros
– less memory

• Cons
– serial access to system

services

Typical for all shared resources2/2/2017 12

“Too Much Milk” Problem

• Don’t buy too much milk
• Any person can be distracted at any point

Person A Person B

Look in fridge: out of milk
Leave for Rema1000
Arrive at Rema1000
Buy milk
Arrive home

Look in fridge: out of milk
Leave for Rema1000
Arrive at Rema1000
Buy milk
Arrive home

2/2/2017 13Tore Brox-Larsen, Universitetet i
Tromsø

A Possible Solution?

if (noMilk) {
if (noNote) {
leave note;
buy milk;
remove note;

}
}

if (noMilk) {
if (noNote) {
leave note;
buy milk;
remove note;

}
}

A: B:

2/2/2017 14Tore Brox-Larsen, Universitetet i
Tromsø

A Possible Solution?

if (noMilk) {
if (noNote) {
leave note;
buy milk;
remove note;

}
}

Ping!!!: and B
starts
executing
until finished,
and then A
starts again

if (noMilk) {
if (noNote) {
leave note;
buy milk;
remove note;

}
}

A: B:

(But B will “see” A by the fridge?: That is what we are trying to achieve.)

And both A and B buys milk.

The
ENTRY is
flawed

2/2/2017 15

Another Possible Solution?

Thread A

leave noteA
if (noNoteB) {
if (noMilk) {
buy milk

}
}
remove noteA

Thread B

leave noteB
if (noNoteA) {
if (noMilk) {
buy milk

}
}
remove noteB

2/2/2017 16Tore Brox-Larsen, Universitetet i
Tromsø

Another Possible Solution?

Thread A

leave noteA
if (noNoteB) {
if (noMilk) {
buy milk

}
}
remove noteA

Thread B

leave noteB
if (noNoteA) {
if (noMilk) {
buy milk

}
}
remove noteB

Ping!! And
B starts

Ping!! And
A starts

“Milk starvation” possible,
but perhaps not a problem in
practice!

WHY?
2/2/2017 17

Yet Another Possible Solution?

Thread A

leave noteA
while (noteB)
do nothing;

if (noMilk)
buy milk;

remove noteA

Thread B

leave noteB
if (noNoteA) {
if (noMilk) {
buy milk

}
}
remove noteB

2/2/2017 18Tore Brox-Larsen, Universitetet i
Tromsø

Yet Another Possible Solution?

• Safe to buy
• If the other buys, quit

Thread A

leave noteA
while (noteB)
do nothing;

if (noMilk)
buy milk;

remove noteA

Thread B

leave noteB
if (noNoteA) {
if (noMilk) {
buy milk

}
}
remove noteB

•Asymmetric
solution

•Busy wait!2/2/2017 19Tore Brox-Larsen, Universitetet i
Tromsø

Remarks

• The last solution works, but
– Life is too complicated
– A’s code is different from B’s
– Busy waiting is a waste

• Peterson’s solution is also complex
• What we want is:

Acquire(lock);
if (noMilk)
buy milk;

Release(lock);

Critical section
a.k.a. Critical region
a.k.a. Mutual
Exclusion (Mutex)

2/2/2017 20Tore Brox-Larsen, Universitetet i
Tromsø

Entry and Exit Protocols

ENTRY;

<Critical region>;

EXIT;

2/2/2017 21Tore Brox-Larsen, Universitetet i
Tromsø

Entry and Exit Protocols

ENTRY;

<Critical region>;

EXIT;

Threads blocked waiting to get access

Will release no. 1 in
queue so it can enter CR

All threads must conform to
the structure:

ENTRY;

<use resources
reserved>

EXIT;

What will
happen if
they don’t?

2/2/2017 22Tore Brox-Larsen, Universitetet i
Tromsø

Characteristics of a realistic solution for
Mutual Exclusion

• Mutex: Only one process can be inside a critical
region

• Non-preemptive scheduling of the resource: A thread
having the resource must release it after a finite time

• No one waits forever: When the resource is
requested by several threads concurrently, it must be
given to one of them after a finite time

• No busy wait (?)
• Processes outside of critical section should not block

other processes
• No assumption about relative speeds of each thread

(time independence)
• Works for multiprocessors 23

Summary

• Concurrency
• Threads first intro
• Too much milk problem

→ mutual execution!
• Entry & exit

• Tomorrow: mutual exclusion with HW support

2/2/2017 24Tore Brox-Larsen, Universitetet i
Tromsø

Alternative Presentations

• CMU: Basic, Advanced, Thread-Level
Parallellism

• Bertrand Meyer
• Scherer
• Lee
• Pike

2/2/2017 Tore Brox-Larsen, Universitetet i
Tromsø

25

http://www.cs.cmu.edu/afs/cs/academic/class/15213-s12/www/lectures/24-sync-basic-1up.pdf
http://www.cs.cmu.edu/afs/cs/academic/class/15213-s12/www/lectures/25-sync-advanced-1up.pdf
http://www.cs.cmu.edu/afs/cs/academic/class/15213-s12/www/lectures/26-parallelism-1up.pdf
http://research.microsoft.com/apps/video/default.aspx?id=103802&l=i
http://research.microsoft.com/apps/video/default.aspx?id=104334&l=i
http://research.microsoft.com/apps/video/default.aspx?id=104083&l=i
https://www.youtube.com/watch?v=cN_DpYBzKso

	Threads and Critical Sections�
	Thread and Address Space
	Concurrency, Composition, and Threads
	Concurrency: Double buffering
	Concurrency: Time Dependent Errors
	Typical Thread API
	Fork/Join
	User vs. Kernel-Level Threads
	User vs. Kernel Threads
	Recall last week: PCB resp. PT
	Thread Control Block
	System Stack for Kernel Threads
	“Too Much Milk” Problem
	A Possible Solution?
	A Possible Solution?
	Another Possible Solution?
	Another Possible Solution?
	Yet Another Possible Solution?
	Yet Another Possible Solution?
	Remarks
	Entry and Exit Protocols
	Entry and Exit Protocols
	Characteristics of a realistic solution for Mutual Exclusion
	Summary
	Alternative Presentations

