Threads and Critical Sections

Otto J. Anshus, Thomas Plagemann,
Tore Brox-Larsen, Kai Li

Thread and Address Space

 Thread

— A sequential execution stream within a process
(also called lightweight process)

« Address space
— All the state needed to run a program

— Provide illusion that program is running on its own
machine (protection)

— There can be more than one thread per address
space

2/2/2017 Tore Brox-Larsen, Universitetet i
Tromsg

Concurrency, Composition, and Threads

/O devices

— Overlap I/Os with I/Os and computation (modern OS
approach)

Compositional Tool

— Doing multiple things “at the same time” on the machine:
Web browser

Distributed systems
— Client/server computing: NFS file server

Multiprocessors
— Multiple CPUs sharing the same memory: parallel program

2/2/2017 Tore Brox-Larsen, Universitetet i
Tromsg

Concurrency: Double buffering

- N Specifies
[* Fill s and empty t concurrently */ concurrent
Get(s,f); execution
Get (s,f) S
Input sequence f v A Repeat
> Copy;
t I* Copy */ cobegin
t:=s;
Output ' :
‘ utput sequence g Put(t,0); < (Threads)
) Get(sf); 4
W _ e
PU (t,g) coend
until completed,;
Put and Get are disjunct
e... but not with regards to Copy!
21212017 Tore Brox-Larsen, Universitetet i 4

Tromsg

Concurrency: Time Dependent Errors

Mini assignment: are both solutions correct? What can happen?

Repeat Repeat
Copy; cobegin
cobegin Copy;
Put(t,g); Put(t,g);
Get(s,f); Get(s,f);
coend; coend;
until completed, until completed;
21212017 Tore Brox-Larsen, Universitetet i

Tromsg

Typical Thread API

Creation

— Fork, Join

Mutual exclusion

— Acquire (lock), Release (unlock)
Condition variables

— Wait, Signal, Broadcast

Alert
— Alert, AlertWait, TestAlert

2/2/2017 Tore Brox-Larsen, Universitetet i
Tromsg

*Difficult to use

*Not good: Combines
specification of
concurrency (Fork)
with synchronization
(Join)

Fork/Join

Executes concurrently
P1:

FORK T1;—

- END:
JOIN T1: 4
P1 musl/'

WAIT
until T1
finishes

JOIN Whom??/

21212017

User vs. Kernel-Level Threads

 Question

— What is the difference between user-level and
kernel-level threads”?

 Discussions

— When a user-level thread is blocked on an I/O
event, the whole process is blocked

— A context switch of kernel-threads is expensive

— A smart scheduler (two-level) can avoid both
drawbacks

2/2/2017 Tore Brox-Larsen, Universitetet i
Tromsg

User vs. Kernel Threads

Threads

Uy

Thread Package

Threads

Process “Package” Thread Package

KERNEL

Recall last week: PCB resp. PT

 Which information has to be stored/saved for
a process”?

2/2/2017 Tore Brox-Larsen, Universitetet i
Tromsg

10

Thread Control Block

« Shared information
— Processor info: parent process, time, etc
— Memory: segments, page table, and stats, etc
— |/O and file: comm ports, directories and file
descriptors, etc
* Private state
— State (ready, running and blocked)
— Regqisters
— Program counter
— Execution stack

2/2/2017 Tore Brox-Larsen, Universitetet i
Tromsg

11

System Stack for Kernel Threads

« Each kernel thread has

— a user stack

— a private kernel stack

* Pros

— a user stack

— a shared kernel stack
with other threads in the
same address space

— concurrent accesses to

system services

— works on a
multiprocessor

« Cons
— More memory

21212017

Pros
— less memory

cons

— serial access to system
services

Typical for all shared resources

Each kernel thread has

12

“Too Much Milk” Problem

Person A Person B

Look in fridge: out of milk
|eave for Remal000
Arrive at Remal000

Buy milk
Arrive home

Look in fridge: out of milk
eave for Remal000
Arrive at Remal000
Buy milk '
Arrive home

* Don’t buy too Ch milk
* Any person can be distracted at any point

2/2/2017 Tore Brox-Larsen, Universitetet i 13
Tromsg

A Possible Solution?

A B:
i}) 1IT (noMilk) {
iIT (noMilk) { _

if (noNote) { " eave noter
leave note; ?

_ buy milk;
buy milk; Y i
] remove note,
remove note ” }
2/2/2017 Tore Brox-Larsen, Universitetet i 14

Tromsg

A Possible Solution?

A- B:
]) 1T (noMilk
|f_(noMilk) { ig (noNoteg E
it (noNote) { leave note;
leave note; buy milk; ,

buy milk; _
remove note;
remove note; 1

¥ }

}

Ping!!!: and B

starts

executing The

until finished, ENTRY is
and then A flawed
starts again

And both A and B buys milk.

H (13 77 H t) H - -
2/2/2017 (But B will “see” A by the fridge?: That is what we are trying to achleve.)15

Another Possible Solution?

Thread A Thread B
leave noteA leave noteB
1T (noNoteB) { 1T (noNoteA) {
it (noMilk) { it (noMilk) {
buy milk buy milk
} }
} }
remove noteA remove noteB
2/2/2017 Tore Brox-Larsen, Universitetet i

Tromsg

16

Another Possible Solution?

Thread A Thread B
leave note leave noteB
1T (noNoteB) { 1T (noNoteA) {
1T (noMilk) { it (noMilk) {
buy milk buy milk
¥ ¥
¥ I

remove noteA remove noteB

Ping!! And
B starts

“Milk starvation” possible,
Ping!! And but perhaps not a problem in

A starts practicg!\ 17

WHY?

21212017

Yet Another Possible Solution?

Thread A Thread B
leave noteA leave noteB
while (nhoteB) 1T (noNoteA) {

do nothing; It (noMilk) {
1T (noMilk) buy milk
buy milk; }
remove noteA }

remove noteB

2/2/2017 Tore Brox-Larsen, Universitetet i 18
Tromsg

Yet Another Possible Solution?

Thread A Thread B
leave noteA leave noteB
while (nhoteB) 1T (noNoteA) {

do nothing; It (noMilk) {
1T (noMilk) buy milk
buy milk; }
remove noteA }

remove noteB

« Safe to buy
* |If the other buys, quit

sAsymmetric
solution

2/2/2017 Tore Brox-Larsen, Universitetet i *Busy wait! 19

Tromsg

Remarks

* The last solution works, but
— Life is too complicated
— A’s code is different from B’s
— Busy waiting is a waste

« Peterson’s solution is also complex
 What we want is:

21212017

Acquire(lock);
1T (noMilk)

buy milk;
Release(lock);

Tore Brox-Larsen, Universitetet i
Tromsg

Critical section
a.k.a. Critical region
a.k.a. Mutual
Exclusion (Mutex)

20

21212017

Entry and Exit Protocols

ENTRY;

<Critical region>;

EXIT;

Tore Brox-Larsen, Universitetet i
Tromsg

21

Entry and Exit Protocols

Threads blocked waiting to get access _
What will

happen if
they don’t?

/

<Critical region>; /

All threads must conform to
the structure:

ENTRY;

Will release no. 1 in
queue so it can enter CR

<use resources
reserved>

EXIT;

2/2/2017 Tore Brox-Larsen, Universitetet i
Tromsg

Characteristics of a realistic solution for
Mutual Exclusion

Mutex: Only one process can be inside a critical
region

Non-preemptive scheduling of the resource: A thread
having the resource must release it after a finite time

No one waits forever: When the resource is
requested by several threads concurrently, it must be
given to one of them after a finite time

No busy wait (?)

Processes outside of critical section should not block
other processes

No assumption about relative speeds of each thread
(time independence)

Works for multiprocessors ’a

Summary

Concurrency
Threads first intro

Too much milk problem
— mutual execution!

Entry & exit

Tomorrow: mutual exclusion with HW support

2/2/2017 Tore Brox-Larsen, Universitetet i 24
Tromsg

Alternative Presentations

« CMU: : ,

2/2/2017 Tore Brox-Larsen, Universitetet i 25
Tromsg

http://www.cs.cmu.edu/afs/cs/academic/class/15213-s12/www/lectures/24-sync-basic-1up.pdf
http://www.cs.cmu.edu/afs/cs/academic/class/15213-s12/www/lectures/25-sync-advanced-1up.pdf
http://www.cs.cmu.edu/afs/cs/academic/class/15213-s12/www/lectures/26-parallelism-1up.pdf
http://research.microsoft.com/apps/video/default.aspx?id=103802&l=i
http://research.microsoft.com/apps/video/default.aspx?id=104334&l=i
http://research.microsoft.com/apps/video/default.aspx?id=104083&l=i
https://www.youtube.com/watch?v=cN_DpYBzKso

	Threads and Critical Sections�
	Thread and Address Space
	Concurrency, Composition, and Threads
	Concurrency: Double buffering
	Concurrency: Time Dependent Errors
	Typical Thread API
	Fork/Join
	User vs. Kernel-Level Threads
	User vs. Kernel Threads
	Recall last week: PCB resp. PT
	Thread Control Block
	System Stack for Kernel Threads
	“Too Much Milk” Problem
	A Possible Solution?
	A Possible Solution?
	Another Possible Solution?
	Another Possible Solution?
	Yet Another Possible Solution?
	Yet Another Possible Solution?
	Remarks
	Entry and Exit Protocols
	Entry and Exit Protocols
	Characteristics of a realistic solution for Mutual Exclusion
	Summary
	Alternative Presentations

