
Lecture 6: Mutual Exclusion

Phuong Ha

Based on and including slides from Otto J. Anshus, Tore
Brox-Larsen, Kai Li, Thomas Plagemann, A. S. Tanenbaum, A.
Silberschatz, M. Herlihy, N. Shavit

Outline
 Preemptive scheduling
 Interprocess communication

 Background
 Mutual exclusion

 Disable interrupt
 Utilize atomic instructions

 Spin-locks and contention
 Basic spin-locks
 Bus-based architecture
 TAS-based spin-locks revisited
 Exponential backoff
 Queue locks

 Anderson’s, CLH, MCS

22/9/2017

When to Schedule?
 Process/thread creation
 Process/thread exit
 Blocking on I/O or synchronization
 I/O interrupt
 Clock interrupt (preemptive scheduling)

32/9/2017

Preemptive Scheduling
 Scheduler select a READY process and sets it up to run for a maximum

of some fixed time (time-slice)
 Scheduled process computes happily, oblivious to the fact that a

maximum time-slice was set by the scheduler
 Whenever a running process exhausts its time-slice, the scheduler

needs to suspend the process and select another process to run
(assuming one exists)

 To do this, the scheduler needs to be running!
 Clock interrupt must occur at the end of the time slice.

42/9/2017

Preemptive vs. Non-Preemptive Scheduling

52/9/2017

Preemptive vs. Non-Preemptive Scheduling

 Non-Preemptive Scheduling (“Yield”)
 Current process or thread has exclusive control until it

explicitly yields
 No other thread executes until yield
 Access to shared resources simplified

 Preemptive scheduling
 Current process or thread may be preempted at any time

without even noticing.
 Other threads will progress concurrently
 Access to shared resources becomes more complicated
 Some sort of coordination among the threads is needed

62/9/2017

Outline
 Preemptive scheduling
 Interprocess communication

 Background
 Mutual exclusion

 Disable interrupt
 Utilize atomic instructions

 Spin-locks and contention
 Basic spin-locks
 Bus-based architecture
 TAS-based spin-locks revisited
 Exponential backoff
 Queue locks

 Anderson’s, CLH, MCS

72/9/2017

Background
 Concurrent access to shared data may result in data

inconsistency

 Maintaining data consistency requires mechanisms to
ensure the orderly execution of cooperating processes

 Suppose that we wanted to provide a solution to the
producer-consumer problem that fills the buffer.
 We can do so by having an integer count that keeps track of the

number of items.
 Initially, count is set to 0. It is incremented by the producer after

it produces a new item and is decremented by the consumer after
it consumes an item.

82/9/2017

Presenter
Presentation Notes
S&G 6th: pp. 215 - 217

Ex: Producer-consumer problem

9

out

in

Capacity: N

B

Producer

PUT (m):
r:=GET:

Consumer

Rules for the buffer B:

•No Get when empty

•No Put when full

•B shared

2/9/2017

Producer
while (true) {

/* produce an item and put in nextProduced */
while (count == BUFFER_SIZE)

; // do nothing
buffer [in] = nextProduced;
in = (in + 1) % BUFFER_SIZE;
count++;

}

102/9/2017

Consumer

while (true) {
while (count == 0)

; // do nothing
nextConsumed = buffer[out];
out = (out + 1) % BUFFER_SIZE;
count--;

/* consume the item in nextConsumed */
}

112/9/2017

Race Condition
 count++ could be implemented as

register1 = count
register1 = register1 + 1
count = register1

 count-- could be implemented as

register2 = count
register2 = register2 - 1
count = register2

 Consider this execution interleaving with “count = 5” initially:
S0: producer execute register1 = count {register1 = 5}
S1: producer execute register1 = register1 + 1 {register1 = 6}
S2: consumer execute register2 = count {register2 = 5}
S3: consumer execute register2 = register2 - 1 {register2 = 4}
S4: producer execute count = register1 {count = 6 }
S5: consumer execute count = register2 {count = 4}

122/9/2017

A simple concurrent program
Task: Count the number of running processes

shared counter=0;
Increment() {

t = counter;
counter = t + 1;
return;

}

13

process 1

process 2

t = counter (0) counter = t + 1 (1)

t = counter (0) counter = t + 1 (1)

counter = 1

counter = 1 

2/9/2017

Presenter
Presentation Notes
Sequential vs. parallel

Critical Regions
Conditions required to avoid race condition:

 Mutual exclusion:
 No two processes may be simultaneously inside their critical

regions.

 Progress:
 No process running outside its critical region may block other

processes.
 Bounded waiting:

 No process should have to wait forever to enter its critical
region.

 No assumptions may be made about speeds or the number of CPUs.

142/9/2017

.

Mutual exclusion using critical regions

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639
2/9/2017 15

Mutual exclusion example
shared counter = 0; cs = free;
Increment() {

mutex_lock(&cs); //synch. point
t = counter;
counter = t + 1;
mutex_unlock(&cs);
return;

}

16

process 1

process 2

t =
 c

ou
nt

er
 =

 0

co
un

te
r =

 t
+

1
=

1

counter = 1

counter = 2 

m
t_

lo
ck

(c
s)

m
t_

lo
ck

(c
s)

m
t_

un
lo

ck
(c

s)

t =
 c

ou
nt

er
 =

 1

co
un

te
r =

 t
+

1
=

2

m
t_

un
lo

ck
(c

s)

waiting

2/9/2017

Outline
 Preemptive scheduling
 Interprocess communication

 Background
 Mutual exclusion

 Disable interrupt
 Utilize atomic instructions

 Spin-locks and contention
 Basic spin-locks
 Bus-based architecture
 TAS-based spin-locks revisited
 Exponential backoff
 Queue locks

 Anderson’s, CLH, MCS

172/9/2017

Implementation of Synchronization Mechanisms

18

Concurrent
Applications

Locks Semaphores Monitors

Load/Store Interrupt disable Test&Set

High-Level
Atomic API

Low-Level
Atomic Ops

Interrupt (timer or I/O completion), Scheduling, Multiprocessor

Send/Receive
Shared Variables Message Passing

2/9/2017

Hardware Support for Mutex
 Atomic load and atomic store from/to memory

 Assumed by Dijkstra (CACM 1965): Shared memory w/atomic
R and W operations issued in program order

 L. Lamport, “A Fast Mutual Exclusion Algorithm,” ACM Trans.
on Computer Systems, 5(1):1-11, Feb 1987.

 Disabling Interrupts
 Atomic read-modify-write

 IBM/360: Test-And-Set (TAS) proposed by J. Dirac for IBM
S/360 (1963)

 IBM/370: Generalized Compare-And-Swap (CAS) (1970)

192/9/2017

For Shared Memory Multiprocessor w/only atomic
read and atomic write (Michael Fischer)

20

Repeat
await <x=0>;
<x := i>;
<delay>;

until <x = i>;
use shared resource

<x := 0>;

Entry:

Exit

Critical
Region

”While x =/= 0 do skip;”

Or could block? How?

Executed by process no. i.

X is shared memory.

<op> is an Atomic operation, no more
complex than load or store, (no test-
and-set or similar)

We are assuming that COMMON CASE will be fast and that all processes will get through eventually

L. Lamport. A Fast Mutual Exclusion Algorithm, 1986.
2/9/2017

Disable Interrupts
 Model

 Single-processor system
 CPU scheduling

 Internal events
 Threads do something to relinquish the CPU

 External events
 Interrupts cause rescheduling of the CPU

 Disabling interrupts
 Delay handling of external events

 and make sure we have a safe ENTRY or EXIT

212/9/2017

Does This Work?

 Kernel cannot let users disable interrupts
 Kernel can provide two system calls, Acquire and Release,

but need ID of critical region
 Remember: Critical sections can be arbitrary long, OS

must be able to preempt process in critical section
 Disabling interrupts is insufficient on multiprocessors

22

Acquire() {
disable interrupts;

}

Release() {
enable interrupts;

}

User Level

2/9/2017

Disable Interrupts w/Busy Wait & Lock

 Why do we need to disable interrupts at all?
 Would this work?

23

Acquire(lock) {
disable interrupts;
while (lock != FREE)

;
lock = BUSY;
enable interrupts;

}

Release(lock) {
disable interrupts;
lock = FREE;
enable interrupts;

}
Spins

2/9/2017

Disable Interrupts Briefly w/Busy Wait

 Why do we need to enable interrupts inside the loop in Acquire?
 Would this work for multiprocessors?

24

Acquire(lock) {
disable interrupts;
while (lock != FREE){
enable interrupts;
disable interrupts;
}

lock = BUSY;
enable interrupts;

}

Release(lock) {
disable interrupts;
lock = FREE;
enable interrupts;

}
Spins

2/9/2017

Disable Interrupts w/Blocking Queue

 When must Acquire re-enable interrupts in going to sleep?
 Before insert()?
 After insert(), but before block?

 Would this work on multiprocessors?

25

Acquire(lock) {
disable interrupts;
while (lock == BUSY) {
insert(caller, lock_queue);
BLOCK caller;

} else
lock = BUSY;

enable interrupts;
}

Release(lock) {
disable interrupts;
if (nonempty(lock_queue)) {
remove(tid, lock_queue);
insert(tid, ready_queue);

}
lock = FREE;
enable interrupts;

}

Starvation
possible, at
least
unfairness

Deadlock possible because then Release can be executed by
another thread right before we can do the BLOCK, and then we
do the BLOCK, and we will never be awakened again

So enable inside BLOCK, and must involve
Kernel2/9/2017

Outline
 Preemptive scheduling
 Interprocess communication

 Background
 Mutual exclusion

 Disable interrupt
 Utilize atomic instructions

 Spin-locks and contention
 Basic spin-locks
 Bus-based architecture
 TAS-based spin-locks revisited
 Exponential backoff
 Queue locks

 Anderson’s, CLH, MCS

262/9/2017

Atomic Read-Modify-Write Instructions
 What we want: Test&Set(lock): Returns TRUE if lock is

closed; else returns FALSE and closes lock.
 Exchange (xchg, x86 architecture)

 Swap register and memory

 Compare and Exchange (cmpxchg, 486 or Pentium)
 cmpxchg d,s: If Dest = (al,ax,eax), Dest = SRC;

else (al,ax,eax) = Dest

 LOCK prefix in x86
 Fetch&Add or Fetch&Op

 Atomic instructions for large shared memory multiprocessor systems

 Load-linked and store-conditional (MIPS, Alpha)
 Read value in one instruction, do some operations
 When store, check if value has been modified. If not, ok; otherwise,

jump back to start

27

Used to
implement
USER level
locks

2/9/2017

Examples of Read-Modify-Write
 test&set (&address) { /* most architectures */

result = M[address];
M[address] = 1;
return result;

}
 swap (&address, register) { /* x86 */

temp = M[address];
M[address] = register;
register = temp;

}
 compare&swap (&address, reg1, reg2) { /* 68000 */

if (reg1 == M[address]) {
M[address] = reg2;
return success;

} else {
return failure;

}
}

 load-linked&store-conditional(&address) {
/* R4000, alpha */
loop:

ll r1, M[address];
movi r2, 1; /* Can do arbitrary comp */
sc r2, M[address];
beqz r2, loop;

}

2/9/2017 28

A Simple Solution with Test&Set

 Waste CPU time (busy waiting by all threads)
 Low priority threads may never get a chance to run

 starvation possible because other threads always grabs the lock, but can be lucky…):
No Bounded Waiting (a MUTEX criteria)

 No fairness, no order, random who gets access

29

Acquire(lock) {
while (TAS(lock))
;

}

Release(lock) {
lock = FALSE;

}

{result := lock;
lock := TRUE; /*1*/
return result;}

INITIALLY: Lock := FALSE; /*0: OPEN */

Spin until
lock = open

TAS (lock):

2/9/2017

Test&Set with Minimal Busy Waiting

 Two levels: Get inside a mutex, then check resource
availability (and block (remember to open mutex!) or not).

 Still busy wait, but only for a short time
 Use yield() inside the while loop on uniprocessors
 Works with multiprocessors 30

Acquire(lock) {
while (TAS(lock.guard))
;

if (lock.value) {
enqueue the thread;
block and lock.guard:=OPEN;
%Starts here after a Release()

}
lock.value:=CLOSED;
lock.guard:=OPEN;

}

Release(lock) {
while (TAS(lock.guard))
;

if (anyone in queue) {
dequeue a thread;
make it ready;

} else lock.value:=OPEN;
lock.guard:=OPEN;

}

CLOSED = TRUE
OPEN = FALSE

NB: Lock is kept closed!

2/9/2017

A Solution without Busy Waiting?

 BUT: No mutual exclusion on the thread queue for
each lock: queue is shared resource

 Need to solve another mutual exclusion problem

31

Acquire(lock) {
while (TAS(lock)) {
enqueue the thread;
block;

}
}

Release(lock) {
if (anyone in queue) {
dequeue a thread;
make it ready;

} else
lock:=OPEN;

}

2/9/2017

• Block/Unblock are implemented as system calls
• How would you implement them?

– Minimal waiting solution

Acquire(lock) {
while (TAS(lock))
Block(lock);

}

Release(lock) {
lock = 0;
Unblock(lock);

}

Using System Call Block/Unblock

322/9/2017

Block and Unblock

33

Block (lock) {
spin on lock.guard;
insert (current, lock_queue, last);
clear lock.guard;
goto scheduler;

}

Context is already saved by
Trap Handler because we
did a system call

Unblock (lock) {
spin on lock.guard;
insert (out (lock_queue, first), Ready_Queue, last);
clear lock.guard;
goto scheduler;

}

Ready_Queue

lock_queue

Current

Before Block

After Schedule

2/9/2017

References
 A. S. Tanenbaum, Modern Operating Systems.
 A. Silberschatz et. al., Operating System Concepts.
 M. Herlihy et. al., The Art of Multiprocessor Programming
 Via Wikipedia

 Mutual exclusion
 Dekker’s algorithm
 Peterson’s algorithm
 Lamport’s bakery algorithm
 Szymansky’s algorithm
 Taubenfeldts black and white bakery algorithm

 L. Lamport, A Fast Mutual Exclusion Algorithm
 http://research.microsoft.com/users/lamport/pubs/fast-

mutex.pdf
342/9/2017

https://en.wikipedia.org/wiki/Mutual_exclusion
https://en.wikipedia.org/wiki/Dekker's_algorithm
https://en.wikipedia.org/wiki/Peterson's_algorithm
https://en.wikipedia.org/wiki/Lamport's_bakery_algorithm
https://en.wikipedia.org/wiki/Szyma%C5%84ski's_algorithm
http://www.cs.tau.ac.il/%7Eafek/gadi.pdf
http://research.microsoft.com/users/lamport/pubs/fast-mutex.pdf

Thanks for your attention!

Questions?

	Lecture 6: Mutual Exclusion
	Outline
	When to Schedule?
	Preemptive Scheduling
	Preemptive vs. Non-Preemptive Scheduling
	Preemptive vs. Non-Preemptive Scheduling
	Outline
	Background
	Ex: Producer-consumer problem
	Producer
	Consumer
	Race Condition
	A simple concurrent program
	Critical Regions�
	Slide Number 15
	Mutual exclusion example
	Outline
	Implementation of Synchronization Mechanisms
	Hardware Support for Mutex
	For Shared Memory Multiprocessor w/only atomic read and atomic write (Michael Fischer)
	Disable Interrupts
	Does This Work?
	Disable Interrupts w/Busy Wait & Lock�
	Disable Interrupts Briefly w/Busy Wait�
	Disable Interrupts w/Blocking Queue
	Outline
	Atomic Read-Modify-Write Instructions�
	Examples of Read-Modify-Write
	A Simple Solution with Test&Set
	Test&Set with Minimal Busy Waiting
	A Solution without Busy Waiting?
	Using System Call Block/Unblock�
	Block and Unblock
	References
	Thanks for your attention!

