
Lecture 6: Mutual Exclusion

Phuong Ha

Based on and including slides from Otto J. Anshus, Tore
Brox-Larsen, Kai Li, Thomas Plagemann, A. S. Tanenbaum, A.
Silberschatz, M. Herlihy, N. Shavit

Outline
 Preemptive scheduling
 Interprocess communication

 Background
 Mutual exclusion

 Disable interrupt
 Utilize atomic instructions

 Spin-locks and contention
 Basic spin-locks
 Bus-based architecture
 TAS-based spin-locks revisited
 Exponential backoff
 Queue locks

 Anderson’s, CLH, MCS

22/9/2017

When to Schedule?
 Process/thread creation
 Process/thread exit
 Blocking on I/O or synchronization
 I/O interrupt
 Clock interrupt (preemptive scheduling)

32/9/2017

Preemptive Scheduling
 Scheduler select a READY process and sets it up to run for a maximum

of some fixed time (time-slice)
 Scheduled process computes happily, oblivious to the fact that a

maximum time-slice was set by the scheduler
 Whenever a running process exhausts its time-slice, the scheduler

needs to suspend the process and select another process to run
(assuming one exists)

 To do this, the scheduler needs to be running!
 Clock interrupt must occur at the end of the time slice.

42/9/2017

Preemptive vs. Non-Preemptive Scheduling

52/9/2017

Preemptive vs. Non-Preemptive Scheduling

 Non-Preemptive Scheduling (“Yield”)
 Current process or thread has exclusive control until it

explicitly yields
 No other thread executes until yield
 Access to shared resources simplified

 Preemptive scheduling
 Current process or thread may be preempted at any time

without even noticing.
 Other threads will progress concurrently
 Access to shared resources becomes more complicated
 Some sort of coordination among the threads is needed

62/9/2017

Outline
 Preemptive scheduling
 Interprocess communication

 Background
 Mutual exclusion

 Disable interrupt
 Utilize atomic instructions

 Spin-locks and contention
 Basic spin-locks
 Bus-based architecture
 TAS-based spin-locks revisited
 Exponential backoff
 Queue locks

 Anderson’s, CLH, MCS

72/9/2017

Background
 Concurrent access to shared data may result in data

inconsistency

 Maintaining data consistency requires mechanisms to
ensure the orderly execution of cooperating processes

 Suppose that we wanted to provide a solution to the
producer-consumer problem that fills the buffer.
 We can do so by having an integer count that keeps track of the

number of items.
 Initially, count is set to 0. It is incremented by the producer after

it produces a new item and is decremented by the consumer after
it consumes an item.

82/9/2017

Presenter
Presentation Notes
S&G 6th: pp. 215 - 217

Ex: Producer-consumer problem

9

out

in

Capacity: N

B

Producer

PUT (m):
r:=GET:

Consumer

Rules for the buffer B:

•No Get when empty

•No Put when full

•B shared

2/9/2017

Producer
while (true) {

/* produce an item and put in nextProduced */
while (count == BUFFER_SIZE)

; // do nothing
buffer [in] = nextProduced;
in = (in + 1) % BUFFER_SIZE;
count++;

}

102/9/2017

Consumer

while (true) {
while (count == 0)

; // do nothing
nextConsumed = buffer[out];
out = (out + 1) % BUFFER_SIZE;
count--;

/* consume the item in nextConsumed */
}

112/9/2017

Race Condition
 count++ could be implemented as

register1 = count
register1 = register1 + 1
count = register1

 count-- could be implemented as

register2 = count
register2 = register2 - 1
count = register2

 Consider this execution interleaving with “count = 5” initially:
S0: producer execute register1 = count {register1 = 5}
S1: producer execute register1 = register1 + 1 {register1 = 6}
S2: consumer execute register2 = count {register2 = 5}
S3: consumer execute register2 = register2 - 1 {register2 = 4}
S4: producer execute count = register1 {count = 6 }
S5: consumer execute count = register2 {count = 4}

122/9/2017

A simple concurrent program
Task: Count the number of running processes

shared counter=0;
Increment() {

t = counter;
counter = t + 1;
return;

}

13

process 1

process 2

t = counter (0) counter = t + 1 (1)

t = counter (0) counter = t + 1 (1)

counter = 1

counter = 1

2/9/2017

Presenter
Presentation Notes
Sequential vs. parallel

Critical Regions
Conditions required to avoid race condition:

 Mutual exclusion:
 No two processes may be simultaneously inside their critical

regions.

 Progress:
 No process running outside its critical region may block other

processes.
 Bounded waiting:

 No process should have to wait forever to enter its critical
region.

 No assumptions may be made about speeds or the number of CPUs.

142/9/2017

.

Mutual exclusion using critical regions

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639
2/9/2017 15

Mutual exclusion example
shared counter = 0; cs = free;
Increment() {

mutex_lock(&cs); //synch. point
t = counter;
counter = t + 1;
mutex_unlock(&cs);
return;

}

16

process 1

process 2

t =
 c

ou
nt

er
 =

 0

co
un

te
r =

 t
+

1
=

1

counter = 1

counter = 2

m
t_

lo
ck

(c
s)

m
t_

lo
ck

(c
s)

m
t_

un
lo

ck
(c

s)

t =
 c

ou
nt

er
 =

 1

co
un

te
r =

 t
+

1
=

2

m
t_

un
lo

ck
(c

s)

waiting

2/9/2017

Outline
 Preemptive scheduling
 Interprocess communication

 Background
 Mutual exclusion

 Disable interrupt
 Utilize atomic instructions

 Spin-locks and contention
 Basic spin-locks
 Bus-based architecture
 TAS-based spin-locks revisited
 Exponential backoff
 Queue locks

 Anderson’s, CLH, MCS

172/9/2017

Implementation of Synchronization Mechanisms

18

Concurrent
Applications

Locks Semaphores Monitors

Load/Store Interrupt disable Test&Set

High-Level
Atomic API

Low-Level
Atomic Ops

Interrupt (timer or I/O completion), Scheduling, Multiprocessor

Send/Receive
Shared Variables Message Passing

2/9/2017

Hardware Support for Mutex
 Atomic load and atomic store from/to memory

 Assumed by Dijkstra (CACM 1965): Shared memory w/atomic
R and W operations issued in program order

 L. Lamport, “A Fast Mutual Exclusion Algorithm,” ACM Trans.
on Computer Systems, 5(1):1-11, Feb 1987.

 Disabling Interrupts
 Atomic read-modify-write

 IBM/360: Test-And-Set (TAS) proposed by J. Dirac for IBM
S/360 (1963)

 IBM/370: Generalized Compare-And-Swap (CAS) (1970)

192/9/2017

For Shared Memory Multiprocessor w/only atomic
read and atomic write (Michael Fischer)

20

Repeat
await <x=0>;
<x := i>;
<delay>;

until <x = i>;
use shared resource

<x := 0>;

Entry:

Exit

Critical
Region

”While x =/= 0 do skip;”

Or could block? How?

Executed by process no. i.

X is shared memory.

<op> is an Atomic operation, no more
complex than load or store, (no test-
and-set or similar)

We are assuming that COMMON CASE will be fast and that all processes will get through eventually

L. Lamport. A Fast Mutual Exclusion Algorithm, 1986.
2/9/2017

Disable Interrupts
 Model

 Single-processor system
 CPU scheduling

 Internal events
 Threads do something to relinquish the CPU

 External events
 Interrupts cause rescheduling of the CPU

 Disabling interrupts
 Delay handling of external events

 and make sure we have a safe ENTRY or EXIT

212/9/2017

Does This Work?

 Kernel cannot let users disable interrupts
 Kernel can provide two system calls, Acquire and Release,

but need ID of critical region
 Remember: Critical sections can be arbitrary long, OS

must be able to preempt process in critical section
 Disabling interrupts is insufficient on multiprocessors

22

Acquire() {
disable interrupts;

}

Release() {
enable interrupts;

}

User Level

2/9/2017

Disable Interrupts w/Busy Wait & Lock

 Why do we need to disable interrupts at all?
 Would this work?

23

Acquire(lock) {
disable interrupts;
while (lock != FREE)

;
lock = BUSY;
enable interrupts;

}

Release(lock) {
disable interrupts;
lock = FREE;
enable interrupts;

}
Spins

2/9/2017

Disable Interrupts Briefly w/Busy Wait

 Why do we need to enable interrupts inside the loop in Acquire?
 Would this work for multiprocessors?

24

Acquire(lock) {
disable interrupts;
while (lock != FREE){
enable interrupts;
disable interrupts;
}

lock = BUSY;
enable interrupts;

}

Release(lock) {
disable interrupts;
lock = FREE;
enable interrupts;

}
Spins

2/9/2017

Disable Interrupts w/Blocking Queue

 When must Acquire re-enable interrupts in going to sleep?
 Before insert()?
 After insert(), but before block?

 Would this work on multiprocessors?

25

Acquire(lock) {
disable interrupts;
while (lock == BUSY) {
insert(caller, lock_queue);
BLOCK caller;

} else
lock = BUSY;

enable interrupts;
}

Release(lock) {
disable interrupts;
if (nonempty(lock_queue)) {
remove(tid, lock_queue);
insert(tid, ready_queue);

}
lock = FREE;
enable interrupts;

}

Starvation
possible, at
least
unfairness

Deadlock possible because then Release can be executed by
another thread right before we can do the BLOCK, and then we
do the BLOCK, and we will never be awakened again

So enable inside BLOCK, and must involve
Kernel2/9/2017

Outline
 Preemptive scheduling
 Interprocess communication

 Background
 Mutual exclusion

 Disable interrupt
 Utilize atomic instructions

 Spin-locks and contention
 Basic spin-locks
 Bus-based architecture
 TAS-based spin-locks revisited
 Exponential backoff
 Queue locks

 Anderson’s, CLH, MCS

262/9/2017

Atomic Read-Modify-Write Instructions
 What we want: Test&Set(lock): Returns TRUE if lock is

closed; else returns FALSE and closes lock.
 Exchange (xchg, x86 architecture)

 Swap register and memory

 Compare and Exchange (cmpxchg, 486 or Pentium)
 cmpxchg d,s: If Dest = (al,ax,eax), Dest = SRC;

else (al,ax,eax) = Dest

 LOCK prefix in x86
 Fetch&Add or Fetch&Op

 Atomic instructions for large shared memory multiprocessor systems

 Load-linked and store-conditional (MIPS, Alpha)
 Read value in one instruction, do some operations
 When store, check if value has been modified. If not, ok; otherwise,

jump back to start

27

Used to
implement
USER level
locks

2/9/2017

Examples of Read-Modify-Write
 test&set (&address) { /* most architectures */

result = M[address];
M[address] = 1;
return result;

}
 swap (&address, register) { /* x86 */

temp = M[address];
M[address] = register;
register = temp;

}
 compare&swap (&address, reg1, reg2) { /* 68000 */

if (reg1 == M[address]) {
M[address] = reg2;
return success;

} else {
return failure;

}
}

 load-linked&store-conditional(&address) {
/* R4000, alpha */
loop:

ll r1, M[address];
movi r2, 1; /* Can do arbitrary comp */
sc r2, M[address];
beqz r2, loop;

}

2/9/2017 28

A Simple Solution with Test&Set

 Waste CPU time (busy waiting by all threads)
 Low priority threads may never get a chance to run

 starvation possible because other threads always grabs the lock, but can be lucky…):
No Bounded Waiting (a MUTEX criteria)

 No fairness, no order, random who gets access

29

Acquire(lock) {
while (TAS(lock))
;

}

Release(lock) {
lock = FALSE;

}

{result := lock;
lock := TRUE; /*1*/
return result;}

INITIALLY: Lock := FALSE; /*0: OPEN */

Spin until
lock = open

TAS (lock):

2/9/2017

Test&Set with Minimal Busy Waiting

 Two levels: Get inside a mutex, then check resource
availability (and block (remember to open mutex!) or not).

 Still busy wait, but only for a short time
 Use yield() inside the while loop on uniprocessors
 Works with multiprocessors 30

Acquire(lock) {
while (TAS(lock.guard))
;

if (lock.value) {
enqueue the thread;
block and lock.guard:=OPEN;
%Starts here after a Release()

}
lock.value:=CLOSED;
lock.guard:=OPEN;

}

Release(lock) {
while (TAS(lock.guard))
;

if (anyone in queue) {
dequeue a thread;
make it ready;

} else lock.value:=OPEN;
lock.guard:=OPEN;

}

CLOSED = TRUE
OPEN = FALSE

NB: Lock is kept closed!

2/9/2017

A Solution without Busy Waiting?

 BUT: No mutual exclusion on the thread queue for
each lock: queue is shared resource

 Need to solve another mutual exclusion problem

31

Acquire(lock) {
while (TAS(lock)) {
enqueue the thread;
block;

}
}

Release(lock) {
if (anyone in queue) {
dequeue a thread;
make it ready;

} else
lock:=OPEN;

}

2/9/2017

• Block/Unblock are implemented as system calls
• How would you implement them?

– Minimal waiting solution

Acquire(lock) {
while (TAS(lock))
Block(lock);

}

Release(lock) {
lock = 0;
Unblock(lock);

}

Using System Call Block/Unblock

322/9/2017

Block and Unblock

33

Block (lock) {
spin on lock.guard;
insert (current, lock_queue, last);
clear lock.guard;
goto scheduler;

}

Context is already saved by
Trap Handler because we
did a system call

Unblock (lock) {
spin on lock.guard;
insert (out (lock_queue, first), Ready_Queue, last);
clear lock.guard;
goto scheduler;

}

Ready_Queue

lock_queue

Current

Before Block

After Schedule

2/9/2017

References
 A. S. Tanenbaum, Modern Operating Systems.
 A. Silberschatz et. al., Operating System Concepts.
 M. Herlihy et. al., The Art of Multiprocessor Programming
 Via Wikipedia

 Mutual exclusion
 Dekker’s algorithm
 Peterson’s algorithm
 Lamport’s bakery algorithm
 Szymansky’s algorithm
 Taubenfeldts black and white bakery algorithm

 L. Lamport, A Fast Mutual Exclusion Algorithm
 http://research.microsoft.com/users/lamport/pubs/fast-

mutex.pdf
342/9/2017

https://en.wikipedia.org/wiki/Mutual_exclusion
https://en.wikipedia.org/wiki/Dekker's_algorithm
https://en.wikipedia.org/wiki/Peterson's_algorithm
https://en.wikipedia.org/wiki/Lamport's_bakery_algorithm
https://en.wikipedia.org/wiki/Szyma%C5%84ski's_algorithm
http://www.cs.tau.ac.il/%7Eafek/gadi.pdf
http://research.microsoft.com/users/lamport/pubs/fast-mutex.pdf

Thanks for your attention!

Questions?

	Lecture 6: Mutual Exclusion
	Outline
	When to Schedule?
	Preemptive Scheduling
	Preemptive vs. Non-Preemptive Scheduling
	Preemptive vs. Non-Preemptive Scheduling
	Outline
	Background
	Ex: Producer-consumer problem
	Producer
	Consumer
	Race Condition
	A simple concurrent program
	Critical Regions�
	Slide Number 15
	Mutual exclusion example
	Outline
	Implementation of Synchronization Mechanisms
	Hardware Support for Mutex
	For Shared Memory Multiprocessor w/only atomic read and atomic write (Michael Fischer)
	Disable Interrupts
	Does This Work?
	Disable Interrupts w/Busy Wait & Lock�
	Disable Interrupts Briefly w/Busy Wait�
	Disable Interrupts w/Blocking Queue
	Outline
	Atomic Read-Modify-Write Instructions�
	Examples of Read-Modify-Write
	A Simple Solution with Test&Set
	Test&Set with Minimal Busy Waiting
	A Solution without Busy Waiting?
	Using System Call Block/Unblock�
	Block and Unblock
	References
	Thanks for your attention!

