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When to Schedule?
 Process/thread creation
 Process/thread exit
 Blocking on I/O or synchronization
 I/O interrupt
 Clock interrupt (preemptive scheduling)
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Preemptive Scheduling
 Scheduler select a READY process and sets it up to run for a maximum 

of some fixed time (time-slice) 
 Scheduled process computes happily, oblivious to the fact that a 

maximum time-slice was set by the scheduler
 Whenever a running process exhausts its time-slice, the scheduler 

needs to suspend the process and select another process to run 
(assuming one exists) 

 To do this, the scheduler needs to be running! 
 Clock interrupt must occur at the end of the time slice.
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Preemptive vs. Non-Preemptive Scheduling
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Preemptive vs. Non-Preemptive Scheduling

 Non-Preemptive Scheduling (“Yield”)
 Current process or thread has exclusive control until it 

explicitly yields
 No other thread executes until yield
 Access to shared resources simplified

 Preemptive scheduling 
 Current process or thread may be preempted at any time 

without even noticing. 
 Other threads will progress concurrently
 Access to shared resources becomes more complicated
 Some sort of coordination among the threads is needed
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Background
 Concurrent access to shared data may result in data 

inconsistency

 Maintaining data consistency requires mechanisms to 
ensure the orderly execution of cooperating processes

 Suppose that we wanted to provide a solution to the 
producer-consumer problem that fills the buffer. 
 We can do so by having an integer count that keeps track of the 

number of items.  
 Initially, count is set to 0. It is incremented by the producer after 

it produces a new item and is decremented by the consumer after 
it consumes an item.
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Ex: Producer-consumer problem

9

out

in

Capacity: N

B

Producer

PUT (m):
r:=GET:

Consumer

Rules for the buffer B:

•No Get when empty

•No Put when full

•B shared
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Producer 
while (true) {

/*  produce an item and put in nextProduced */
while (count == BUFFER_SIZE)

; // do nothing
buffer [in] = nextProduced;
in = (in + 1) % BUFFER_SIZE;
count++;

}   

102/9/2017



Consumer

while (true)  {
while (count == 0)

; // do nothing
nextConsumed =  buffer[out];
out = (out + 1) % BUFFER_SIZE;
count--;

/*  consume the item in nextConsumed */
}
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Race Condition
 count++ could be implemented as

register1 = count
register1 = register1 + 1
count = register1

 count-- could be implemented as

register2 = count
register2 = register2 - 1
count = register2

 Consider this execution interleaving with “count = 5” initially:
S0: producer execute register1 = count {register1 = 5}
S1: producer execute register1 = register1 + 1  {register1 = 6} 
S2: consumer execute register2 = count {register2 = 5} 
S3: consumer execute register2 = register2 - 1 {register2 = 4} 
S4: producer execute count = register1 {count = 6 } 
S5: consumer execute count = register2 {count = 4}
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A simple concurrent program
Task: Count the number of running processes

shared counter=0;
Increment() {

t = counter;
counter = t + 1;
return;

}

13

process 1

process 2

t = counter (0) counter = t + 1 (1)

t = counter (0) counter = t + 1 (1)

counter = 1

counter = 1 
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Critical Regions
Conditions required to avoid race condition:

 Mutual exclusion: 
 No two processes may be simultaneously inside their critical 

regions.

 Progress: 
 No process running outside its critical region may block other 

processes.
 Bounded waiting: 

 No process should have to wait forever to enter its critical 
region.

 No assumptions may be made about speeds or the number of CPUs.
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.

Mutual exclusion using critical regions

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639
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Mutual exclusion example
shared counter = 0; cs = free;
Increment() {

mutex_lock( &cs); //synch. point
t = counter;
counter = t + 1;
mutex_unlock( &cs);
return;

}
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Implementation of Synchronization Mechanisms

18

Concurrent 
Applications

Locks Semaphores   Monitors

Load/Store    Interrupt disable   Test&Set

High-Level
Atomic API

Low-Level
Atomic Ops

Interrupt (timer or I/O completion), Scheduling, Multiprocessor

Send/Receive
Shared Variables Message Passing
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Hardware Support for Mutex
 Atomic load and atomic store from/to memory

 Assumed by Dijkstra (CACM 1965): Shared memory w/atomic
R and W operations issued in program order

 L. Lamport, “A Fast Mutual Exclusion Algorithm,” ACM Trans. 
on Computer Systems, 5(1):1-11, Feb 1987.

 Disabling Interrupts
 Atomic read-modify-write

 IBM/360: Test-And-Set (TAS) proposed by J. Dirac for IBM 
S/360 (1963)

 IBM/370: Generalized Compare-And-Swap  (CAS) (1970)
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For Shared Memory Multiprocessor w/only atomic
read and atomic write (Michael Fischer)

20

Repeat 
await <x=0>;
<x := i>;
<delay>;

until <x = i>;
use shared resource

<x := 0>;

Entry:

Exit

Critical 
Region

”While x =/= 0 do skip;”

Or could block? How?

Executed by process no. i.

X is shared memory.

<op> is an Atomic operation, no more 
complex than load or store, (no test-
and-set or similar)

We are assuming that COMMON CASE will be fast and that all processes will get through eventually

L. Lamport. A Fast Mutual Exclusion Algorithm, 1986.
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Disable Interrupts
 Model

 Single-processor system
 CPU scheduling

 Internal events
 Threads do something to relinquish the CPU

 External events
 Interrupts cause rescheduling of the CPU

 Disabling interrupts
 Delay handling of external events

 and make sure we have a safe ENTRY or EXIT
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Does This Work?

 Kernel cannot let users disable interrupts
 Kernel can provide two system calls, Acquire and Release, 

but need ID of critical region
 Remember: Critical sections can be arbitrary long, OS 

must be able to preempt process in critical section
 Disabling interrupts is insufficient on multiprocessors

22

Acquire() {
disable interrupts;

}

Release() {
enable interrupts;

}

User Level
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Disable Interrupts w/Busy Wait & Lock

 Why do we need to disable interrupts at all?
 Would this work?
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Acquire(lock) {
disable interrupts;
while (lock != FREE)

;
lock = BUSY;
enable interrupts;

}

Release(lock) {
disable interrupts;
lock = FREE;
enable interrupts;

}
Spins
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Disable Interrupts Briefly w/Busy Wait

 Why do we need to enable interrupts inside the loop in Acquire?
 Would this work for multiprocessors?
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Acquire(lock) {
disable interrupts;
while (lock != FREE){
enable interrupts;
disable interrupts;
}

lock = BUSY;
enable interrupts;

}

Release(lock) {
disable interrupts;
lock = FREE;
enable interrupts;

}
Spins
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Disable Interrupts w/Blocking Queue

 When must Acquire re-enable interrupts in going to sleep?
 Before insert()?
 After insert(), but before block? 

 Would this work on multiprocessors?
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Acquire(lock) {
disable interrupts;
while (lock == BUSY) {
insert(caller, lock_queue);
BLOCK caller;

} else 
lock = BUSY;

enable interrupts;
}

Release(lock) {
disable interrupts;
if (nonempty(lock_queue)) {
remove(tid, lock_queue);
insert(tid, ready_queue);

} 
lock = FREE;
enable interrupts;

}

Starvation 
possible, at 
least 
unfairness

Deadlock possible because then Release can be executed by 
another thread right before we can do the BLOCK, and then we 
do the BLOCK, and we will never be awakened again

So enable inside BLOCK, and must involve 
Kernel2/9/2017
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Atomic Read-Modify-Write Instructions
 What we want: Test&Set(lock): Returns TRUE if lock is 

closed; else returns FALSE and closes lock.
 Exchange (xchg, x86 architecture)

 Swap register and memory

 Compare and Exchange (cmpxchg, 486 or Pentium)
 cmpxchg d,s: If Dest = (al,ax,eax), Dest = SRC;  

else  (al,ax,eax) = Dest

 LOCK prefix in x86
 Fetch&Add or Fetch&Op

 Atomic instructions for large shared memory multiprocessor systems

 Load-linked and store-conditional (MIPS, Alpha)
 Read value in one instruction, do some operations
 When store, check if value has been modified.  If not, ok; otherwise, 

jump back to start 
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Used to 
implement 
USER level 
locks
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Examples of Read-Modify-Write 
 test&set (&address) { /* most architectures */

result = M[address];
M[address] = 1;
return result;

}
 swap (&address, register) { /* x86 */

temp = M[address];
M[address] = register;
register = temp;

}
 compare&swap (&address, reg1, reg2) { /* 68000 */

if (reg1 == M[address]) {
M[address] = reg2;
return success;

} else {
return failure;

}
}

 load-linked&store-conditional(&address) { 
/* R4000, alpha */
loop:

ll r1, M[address];
movi r2, 1; /* Can do arbitrary comp */
sc r2, M[address];
beqz r2, loop;

}
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A Simple Solution with Test&Set

 Waste CPU time (busy waiting by all threads)
 Low priority threads may never get a chance to run 

 starvation possible because other threads always grabs the lock, but can be lucky…): 
No Bounded Waiting ( a MUTEX  criteria)

 No fairness, no order, random who gets access
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Acquire(lock) {
while (TAS(lock))
;

}

Release(lock) {
lock = FALSE;

}

{result := lock; 
lock := TRUE; /*1*/
return result;}

INITIALLY: Lock := FALSE;  /*0: OPEN */

Spin until 
lock = open

TAS (lock):
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Test&Set with Minimal Busy Waiting

 Two levels: Get inside a mutex, then check resource 
availability (and block (remember to open mutex!) or not).

 Still busy wait, but only for a short time
 Use yield() inside the while loop on uniprocessors
 Works with multiprocessors 30

Acquire(lock) {
while (TAS(lock.guard))
;

if (lock.value) {
enqueue the thread;
block and lock.guard:=OPEN;
%Starts here after a Release()

}
lock.value:=CLOSED;
lock.guard:=OPEN;

}

Release(lock) {
while (TAS(lock.guard))
;

if (anyone in queue) {
dequeue a thread;
make it ready;

} else lock.value:=OPEN;
lock.guard:=OPEN;

}

CLOSED = TRUE
OPEN = FALSE

NB: Lock is kept closed!
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A Solution without Busy Waiting?

 BUT: No mutual exclusion on the thread queue for 
each lock: queue is shared resource

 Need to solve another mutual exclusion problem

31

Acquire(lock) {
while (TAS(lock)) {
enqueue the thread;
block;

}
}

Release(lock) {
if (anyone in queue) {
dequeue a thread;
make it ready;

} else 
lock:=OPEN;

}
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• Block/Unblock are implemented as system calls
• How would you implement them?

– Minimal waiting solution

Acquire(lock) {
while (TAS(lock))
Block( lock );

}

Release(lock) {
lock = 0;
Unblock( lock );

}

Using System Call Block/Unblock
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Block and Unblock

33

Block (lock) {
spin on lock.guard;
insert (current, lock_queue, last);
clear lock.guard;
goto scheduler;

}

Context is already saved by 
Trap Handler because we 
did a system call

Unblock (lock) {
spin on lock.guard;
insert (out (lock_queue, first), Ready_Queue, last);
clear lock.guard;
goto scheduler;

}

Ready_Queue

lock_queue

Current

Before Block

After Schedule
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Thanks for your attention!

Questions?
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