
Semaphores

Tore Brox-Larsen, UiT,
Otto J. Anshus, UiT, UiO

Concurrency: Double buffering

Put (t,g)

/* Copy */
t := s;

Input sequence f

Output sequence g

Get (s,f) s

t

Get(s,f);

Repeat

Copy;

cobegin

Put(t,g);

Get(s,f);

coend;

until completed;

/* Fill s and empty t concurrently */

•Put and Get are disjunct

•… but not with regards to Copy!

(Threads)

Specifies
concurrent
execution

Concurrency: Double buffering

Put (t,g)

/* Copy */
t := s;

Input sequence f

Output sequence g

Get (s,f) s

t

Three threads executing concurrently:

{put_thread||get_thread||copy_thread} /* Assume preemptive scheduling by
kernel */

Proposed code:

copy_thread:: *{acq(lock_t); acq(lock_s); t=f; rel(lock_s); rel(lock_t);}

get_thread:: *{ack(lock_s); s=f; rel(lock_s);}

put_thread:: *{ack(lock_t): g=t; rel(lock_t);}

/* Fill s and empty t concurrently: OS Kernel will do preemptive scheduling of GET, COPY and PUT*/

•Not bad, but NO ORDER
•And as Thomas once said at the beginning of the course a few years back:
Ordnung Muss Sein!

Threads specifies
concurrent execution

Protecting a Shared Variable

• Remember: we need a shared address space
– threads inside a process share adr. space

• Acquire(mutex); count++; Release(mutex);
• (1) Acquire(mutex) system call

– User level library
• (2) Push parameters onto stack
• (3) Trap to kernel (int instruction)

– Kernel level
• Int handler

– (4) Verify valid pointer to mutex
– Jump to code for Acquire()

• (5) mutex closed: block caller: insert(current, mutex_queue)
• (6) mutex open: get lock

– User level: (7) execute count++
• (8) Release(mutex) system call

Issues

• How “long” is the critical section?
• Competition for a mutex/lock

– Uncontended = rarely in use by someone else
– Contended = often used by someone else
– Held = currently in use by someone

• Think about the results of these options
– Spinning on low-cont. lock
– Spinning on high-cont. lock
– Blocking on low-cont. lock
– Blocking on high-cont. lock

Block/unblock syscalls

• Block
– Sleep on token

• Unblock
– Wakes up first sleeper

• By the way
– Remember that “test and set” works both at user and kernel

level

Implementing Block and Unblock

• Block (lock)
– Spin on lock.guard
– Save context to TCB
– Enqueue TCB
– Clear spin lock.guard
– goto scheduler

• UnBlock(lock)
– Spin on lock.guard
– Dequeue a TCB
– Put TCB in ready_queue
– Clear spin lock.guard

Two Kinds of Synchronization

Acquire (l_id); Release (l_id);

MUTEX

CONDITION
SYNCHRONIZATION

SIGNAL

LOCK is initially CLOSED

Acquire will
block first caller
until Release

Acquire will let
first caller through,
and then block next
until Release

Threads inside one
process: Shared address
space. They can access the
same variables

Acquire (l_id);

<CR>

Release (l_ id);

Acquire (l_id);

<CR>

Release (l_id);

LOCK is initially OPEN

Process w/two threads

Think about ...

• Mutual exclusion using Acquire - Release:
– Easy to forget one of them
– Difficult to debug. must check all threads for correct use:

“Acquire-CR-Release”
– No help from the compiler?

• It does not understand that we mean to say MUTEX
• But could

– check to see if we always match them “left-right”
– associating a variable with a Mutex, and never allow

access to the variable outside of CR

Semaphores (Dijkstra, 1965)

• “Down(s)”/“Wait(s)”/“P(s)”
– Atomic
– DELAY (block, or busy

wait) if not positive
– Decrement semaphore

value by 1

P(s) {
if (--s < 0)
Block(s);

}

V(s) {
if (++s <= 0)
Unblock(s);

}

• “Up(s)”/”Signal(s)”/ “V(s)”
– Atomic
– Increment semaphore by 1
– Wake up a waiting thread if

any

s is NOT accessible through other means than calling P and V

Can get negative s: counts number of waiting threadsMUTEX

Published as an appendix to the paper on the T.H.E. operating system

An aside on Dijkstra

• Dutch, moved to
UT/austin

• 1972 Turing Award
Winner

• Go to statement
considered harmful

• Homepage
• EDSAC Summer School

http://dl.acm.org/ft_gateway.cfm?id=362947&type=pdf&CFID=84779796&CFTOKEN=31560139
http://en.wikipedia.org/wiki/Considered_harmful
http://www.cs.utexas.edu/users/EWD/
http://www.cl.cam.ac.uk/conference/EDSAC99/reminiscences/

Semaphores can be used for …

• Mutual exclusion (solution of critical section problem).
Binary semaphore

• Resources with multiple instances (e.g. buffer slots in
producer/consumer problem. Counting semaphore

• Signaling events

Examples of classic synchronization problems

• Critical Section
• Producer/Consumer
• Reader/Writer
• Sleeping Barber
• Dining Philosophers

Semaphores w/Busy Wait

V(s):

s++;

P(s):

while (s <= 0) {};
s--;

ATOMIC
(NB: mutex around
while can create a
problem…)

• Starvation possible (in theory)?

• Does it matter in practise?

If spinning inside mutex
V will not get in:
•Must open mutex, say,
between every iteration
of while to make it possible
for V to get in

•Costly
•Starvation possible

•Of P’s
•Of V’s

The Structure of a Blocking Semaphore Implementation

s_wait_queue

Threads waiting to get return after calling P (s) when s was <=0s

V (s) P (s)

integer

+1 -1

Unblock one waiting thread
(FIFO is fair)

Block calling threads when
s <=0

•Atomic: Disable interrupts

•Atomic: P() and V() as System calls

•Atomic: Entry-Exit protocols

Using Semaphores
s := 1;

P (s);
<CR>

V(s);

P (s);
<CR>

V(s);

s := 8;

P (s);
<max 8>
V(s);

P (s);
<max 8>
V(s);

s := 0;

P (s); V (s);

A blocks until B says V

A B

One thread gets in, next blocks
until V is executed

Up to 8 threads can pass P, the ninth
will block until V is said by one of
the eight already in there

NB: remember to set the
initial semaphore value!

“The Signal” “The
Mutex”

“The Team”

Simple to debug?

P (x);

V (y);

…..
P (y);

V (x);

…..

What will happen?

x := 0;

y := 0;

A B

THEY ARE FOREVER WAITING FOR EACH OTHERS SIGNAL

Semaphores w/Busy Wait

V(s):

s++;

P(s):

while (s <= 0) {};
s--;

mutex

P: Passieren == to pass
P: Proberen == to test

V: Vrijmagen == to make free
V: Verhogen == to incrementDutch words

P == wait == down, V == signal == up

Why so many names?
•Down, up: what the ops do
•Wait, signal: what the ops are used for
•P, V: the original names by Dijkstra

Rendezvous between two threads

THREAD 1
.
.
V(a)
P(b)
.
.
.

THREAD 2
.
.
V(b);
P(a);
.
.
.

a=b=0

The semaphores remember the signals

The threads meet in time (quite close at least)

a++

b++

time

Thread 1 waits
Until this time

Bounded Buffer using Semaphores

PUT (msg):
P(nonfull);

P(mutex);
<insert>

V(mutex);
V(nonempty);

GET (buf):
P(nonempty);

P(mutex);
<remove>

V(mutex);
V(nonfull);

out

in

Capacity: N

B

Producer

PUT (msg):
GET (buf):

Consumer

Use one semaphore for
each condition we must
wait for to become TRUE:

•B empty: nonempty:=0;

•B full: nonfull:=N

•B mutex: mutex:=1;

Rules for the buffer B:

•No Get when empty

•No Put when full

•B shared, so must have
mutex between Put and
Get

•Is Mutex needed when only 1 P and 1 C?

•PUT at one end, GET at other end

Semaphores w/Busy Wait

V(s):

s++;

P(s):

while (s <= 0) {};
s--;

MUTEX

If P spinning inside mutex then V will not get in
•Must open mutex, say, between every iteration of while to make it
possible for V to get in

•Costly
•Every 10th iteration?

•latency
•Starvation possible, Lady Luck may ignore some threads

•Of P’s
•Of V’s

Hard life…
• Implementing the P and V of semaphores

– If WAIT is done by blocking
• Expensive
• Must open mutex

– But no logical issues since we now have a waiting queue and
will not get starvation

– If done by spinning
• Must open mutex during spin to let V in

– Starvation of P’s and V’s possible
• May not be a problem in practise

• What can a poor (perhaps somewhat theoretical oriented) Computer
Scientist do?
– Research (“I can do better”)
– Publish (So other people can say “I can do better”)

Implementing Semaphores w/mutex

QuickTime™ and a
TIFF (Uncompressed) decompressor

are needed to see this picture.

Presenter
Presentation Notes
Release by V will get a p caller started before v can say release på mutex

Hemmendinger’s solution (1988)

QuickTime™ and a
TIFF (Uncompressed) decompressor

are needed to see this picture.

Kearn’s Solution (1988)

QuickTime™ and a
TIFF (Uncompressed) decompressor

are needed to see this picture.

Hemmendinger’s Correction (1989)

QuickTime™ and a
TIFF (Uncompressed) decompressor

are needed to see this picture.

Hsieh’s Solution (1989)

QuickTime™ and a
TIFF (Uncompressed) decompressor

are needed to see this picture.

Dining Philosophers

•Each: need 2 forks to eat

•5 philosophers: 10 forks

•5 forks: 2 can eat concurrently

i

i i+1
i+1

s

Get L; Get R if free else Put L;
•Starvation possible

Mutex on whole table:
•1 can eat at a time

P(mutex);
eat;

V(mutex);

Ti

Get L; Get R;
•Deadlock possible

P(s(i));
P(s(i+1));

eat;
V(s(i+1));

V(s(i));
S(i) = 1 initially

Ti

Ti

s(i): One
semaphore per fork
to be used in
mutex style P-V

Things to observe:

•A fork can only be used by
one at a time

•No deadlock, please

•No starving, please

•Concurrent eating, please

Dining Philosophers

i

i i+1
i+1

states
•Thinking

•Eating

•Want

While (1) {
<think>
ENTRY;

<eat>
EXIT;

}

Ti

S(i) = 0 initially

P(mutex);
state(i):=Want;
if (state(i-1) !=Eating AND state(i+1) != Eating)
{/*Safe to eat*/

state(i):=Eating;
V(s(i)); /*Because */ }

V(mutex);
P(s(i)); /*Init was 0!! I or neighbor must say V(i) to myself!*/

P(mutex);
state(i):=Thinking;
if (state(i-1)=Want AND state(i-2) !=Eating)
{

state(i-1):=Eating;
V(s(i-1)); /*Start Left neighbor*/

}
/*Analogue for Right neighbor*/
V(mutex);

To avoid starvation they could look after each other:

•Entry: If L and R is not eating I can

•Exit: If L (R) wants to eat and L.L (R.R) is not eating
I start him eating

One semaphore per philosopher
Used in signal style

Trouble: starvation pattern possible:
2&4 at table, 1&3 hungry
2 gets up, 1 sits down
4 gets up, 3 sits down
3 gets up, 4 sits down
1 gets up, 2 sits down
Ad infinitum => Phil 0 will starve

Last solution has a problem

Trouble in Tanenbaums solution:

starvation pattern possible:

2&4 at table, 1&3 hungry
2 gets up, 1 sits down
4 gets up, 3 sits down
3 gets up, 4 sits down
1 gets up, 2 sits down

Ad infinitum => Phil 0 will starve

Dining Philosophers

i

i i+1
i+1

s

Get L; Get R;
•Deadlock possible

P(s(i));
P(s(i+1));

eat;
V(s(i+1));

V(s(i));

S(i) = 1 initially

T1, T2, T3, T4:

T5

P(s(i)):
P(s(i+1));

<eat>
V(s(i+1));

V(s(i));

P(s(1));
P(s(5));

<eat>
V(s(5));

V(s((1));

•Remove the danger of
circular waiting (deadlock)

•T1-T4: Get L; Get R;

•T5: Get R; Get L;

Can we in a simple way do better
than this one?

•Non-symmetric solution. Still
quite elegant

Some Links

• Wikipedia: Semaphore
• Alan B. Downey: The Little Book of Semaphores

Book
Video Lecture

• Jouni Leppäjärvi: Master’s Thesis

http://en.wikipedia.org/wiki/Semaphore_(programming)
http://greenteapress.com/semaphores/LittleBookOfSemaphores.pdf
http://youtu.be/RaEUw107dpg
http://www.enseignement.polytechnique.fr/informatique/INF431/X09-2010-2011/AmphiTHC/SynchronizationPrimitives.pdf

	Semaphores
	Slide Number 2
	Slide Number 3
	Protecting a Shared Variable
	Issues
	Block/unblock syscalls
	Implementing Block and Unblock
	Two Kinds of Synchronization
	Think about ...
	Semaphores (Dijkstra, 1965)
	An aside on Dijkstra
	Semaphores can be used for …
	Examples of classic synchronization problems
	Semaphores w/Busy Wait
	The Structure of a Blocking Semaphore Implementation
	Using Semaphores
	Simple to debug?
	Semaphores w/Busy Wait
	Rendezvous between two threads
	Bounded Buffer using Semaphores
	Semaphores w/Busy Wait
	Hard life…
	Implementing Semaphores w/mutex
	Hemmendinger’s solution (1988)
	Kearn’s Solution (1988)
	Hemmendinger’s Correction (1989)
	Hsieh’s Solution (1989)
	Dining Philosophers
	Dining Philosophers
	Last solution has a problem
	Dining Philosophers
	Some Links

