Semaphores

Tore Brox-Larsen, UIT,
Otto J. Anshus, UIT, UIO

Concurrency: Double buffering

_ Specifies
[* Fill s and empty t concurrently */ concurrent
Get(s,f); execution
Get (s,f) S
Input sequence f o A Repeat
S Copy;
t /* Copy */ cobegin
Output sequence g t=s Put(t,0); ‘\(Threads)
) Get(s f); 4
K_/. .
PUt (tg) coend;

until completed,;

Put and Get are disjunct

e... but not with regards to Copy!

Concurrency: Double buffering

/* Fill s and empty t concurrently: OS Kernel will do preemptive scheduling of GET, COPY and PUT*/

Get (s,f)
Input sequence f — A

Output sequence g

P
<

w_ o
Put (t,g)

*Not bad, but NO ORDER

*And as Thomas once said at the beginning of the course a few ygé

Ordnung Muss Sein!

S

Three threads executing concurrently:

{put_thread||get_thread||copy_thread} /* Assume preemptive scheduling by
kernel */

Proposed code:

copy_thread:: *{acq(lock t); acq(lock_s); t=f; rel(lock_s); rel(lock t);}
get_thread:: *{ack(lock_s); s=f; rel(lock_s);}

put_thread:: *{ack(lock_t): g=t; rel(lock_t);}

GG

Threads specifies
concurrent execution

Protecting a Shared Variable

 Remember: we need a shared address space
— threads inside a process share adr. space

« Acquire(mutex); count++; Release(mutex);
e (1) Acquire(mutex) system call
— User level library
e (2) Push parameters onto stack
* (3) Trap to kernel (int instruction)
— Kernel level
 Int handler
— (4) Verify valid pointer to mutex
— Jump to code for Acquire()
e (5) mutex closed: block caller: insert(current, mutex_queue)
* (6) mutex open: get lock
— User level: (7) execute count++
* (8) Release(mutex) system call

Issues

 How “long” Is the critical section?

o Competition for a mutex/lock
— Uncontended = rarely in use by someone else
— Contended = often used by someone else
— Held = currently in use by someone

 Think about the results of these options
— Spinning on low-cont. lock
— Spinning on high-cont. lock
— Blocking on low-cont. lock
— Blocking on high-cont. lock

Block/unblock syscalls

* Block

— Sleep on token
e Unblock

— Wakes up first sleeper
* By the way

— Remember that “test and set” works both at user and kernel
level

Implementing Block and Unblock

* Block (lock) « UnBlock(lock)
— Spin on lock.guard — Spin on lock.guard
— Save contextto TCB — Dequeuea TCB
— Enqueue TCB — Put TCB in ready _queue
— Clear spin lock.guard — Clear spin lock.guard

— goto scheduler

Two Kinds of Synchronization

Process w/two threads

Acquire (I_id);
<CR>
Release (l_id);

MUTEX

Acquire will let
first caller through,

LOCK is initially OPEN

Acquire (I_id);
<CR>
Release (I_id);

and then block next

Threads inside one
process: Shared address
space. They can access the
same variables

until Release

CONDITION

SYNCHRONIZATION [[Acquire (I_id))

Acquire will
block first caller
until Release

LOCK is initially CLOSED

SIGNAL

Release (l_id);

Think about ...

« Mutual exclusion using Acquire - Release:
— Easy to forget one of them

— Difficult to debug. must check all threads for correct use:
“Acquire-CR-Release”
— No help from the compiler?
o |t does not understand that we mean to say MUTEX
 But could
— check to see if we always match them “left-right”

— associating a variable with a Mutex, and never allow
access to the variable outside of CR

Semaphores (Dijkstra, 1965)

Published as an appendix to the paper on the T.H.E. operating system

« “Down(s)”/*“Wait(s)”/“P(s)” o “Up(s)”/”Signal(s)”/ “V(s)”

— DELAY (block, or busy

wait) if not positive — Increment semaphore by 1
— Decrement semaphore — Wake up a waiting thread if
value by 1 any
P(s) { V(s) {
iIf (--s <0) iIT (++s <= 0)
Block(s); Unblock(s);
/1} }

MUTEX Can get negative s: counts number of waiting threads

s is NOT accessible through other means than calling P and V

An aside on Dijkstra

Dutch, moved to
UT/austin

1972 Turing Award
Winner

EDSAC

http://dl.acm.org/ft_gateway.cfm?id=362947&type=pdf&CFID=84779796&CFTOKEN=31560139
http://en.wikipedia.org/wiki/Considered_harmful
http://www.cs.utexas.edu/users/EWD/
http://www.cl.cam.ac.uk/conference/EDSAC99/reminiscences/

Semaphores can be used for ...

Mutual exclusion (solution of critical section problem).
Binary semaphore

Resources with multiple instances (e.g. buffer slots in
producer/consumer problem. Counting semaphore

Signaling events

Examples of classic synchronization problems

e Critical Section

e Producer/Consumer
e Reader/Writer

» Sleeping Barber

* Dining Philosophers

Semaphores w/Busy Walt

P(s): V(s):
while (s <=0) {};

5~

If spinning inside mutex
V will not get in:

ATOMIC *Must open mutex, say,
(NB: mutex around between every iteration
while can create a of while to make it possible
problem...) for V to get in
*Costly
« Starvation possible (in theory)? ‘StarVag?f;E’OSSib'e
«Of P’

 Does it matter in practise? «Of V’s

The Structure of a Blocking Semaphore Implementation

S integer Threads waiting to get return after calling P (s) when s was <=0

o V (5) P(TQ

Unblock one waiting thread T Block calling threads when
(FIFO is fair) s<=0
+1 -1

sAtomic: Disable interrupts
sAtomic: P() and V() as System calls

sAtomic: Entry-Exit protocols

Using Semaphores

“The Signal”

s:=0;
A

A blocks until B says V

NB: remember to set the
initial semaphore value!

(0]

“The
1; Mutex”

w
I

One thread gets in, next blocks
until V is executed

s:-=g TheTeam”

Up to 8 threads can pass P, the ninth
will block until V is said by one of
the eight already in there

Simple to debug?

What will happen?

THEY ARE FOREVER WAITING FOR EACH OTHERS SIGNAL

Semaphores w/Busy Walt

P: Passieren == to pass
P: Proberen == to test Dutch words

P(s):

while (s <= 0) {}:
5}

V: Vrijmagen == to make free
V: Verhogen == to increment

V(s):

mutex

P == wait == down, V == signal == up

Why so many names?
*Down, up: what the ops do
*\Wait, signal: what the ops are used for
*P, V: the original names by Dijkstra

Rendezvous between two threads

b++

at+

THREAD 2

Thread 1 waits

until this time P(a)
The semaphores remember the signals
\/

. The threads meet in time (quite close at least)
ime

Bounded Buffer using Semaphores

BN

Capacity: N

Av(msg):

Producer

PUT (msg):
P(nonfull);
P(mutex);
<insert>

V(mutex);
V(nonempty);

GET (buf):

GET (buf):
P(nonempty);
P(mutex);

<remove>
V(mutex);
V(nonfull);

Rules for the buffer B: Use one semaphore for
each condition we must

\Wait for to become TRUE:
*No Put when full \-B empty: nonempty:=0;

B shared, so must have B full: nonfull:=N

mutex between Put an

Get d*-B mutex: mutex:=1;

*No Get when empty

*|s Mutex needed when only 1 Pand 1 C?
*PUT at one end, GET at other end

Semaphores w/Busy Wait
P(s):

while (s <= 0) {};
S--;

V(s):

MUTEX

If P spinning inside mutex then V will not get in
*Must open mutex, say, between every iteration of while to make it
possible for V to get in
«Costly
sEvery 10th iteration?
slatency
Starvation possible, Lady Luck may ignore some threads
*Of P’s
*Of V’s

Hard life...

e Implementing the P and V of semaphores

— If WAIT is done by blocking
» Expensive
* Must open mutex

— But no logical issues since we now have a waiting queue and
will not get starvation

— If done by spinning
» Must open mutex during spin to let V in
— Starvation of P’s and V’s possible
» May not be a problem in practise

* What can a poor (perhaps somewhat theoretical oriented) Computer
Scientist do?

— Research (“I can do better”)
— Publish (So other people can say “I can do better”)

Implementing Semaphores w/mutex

P(s) { v(s) {
Acquire (s.mutex) ; Acquire (s.mutex) ;
1f (=-s.value < 0) { if (++s.value <= 0)
Release (s.mutex) ; Release (s.delay) ;
Acquire(s.delay) Release (s.mutex) ;

} else }
Release (s.mutex) ;

Kotulski (1988)

e Two processes call P(s) (s.value is initialized to 0) and
preempted after Release(s.mutex)

e Two other processes call V(s)

Presenter
Presentation Notes
Release by V will get a p caller started before v can say release på mutex

Hemmendinger’s solution (1988)

P(s) { Vi(s) {
Acquire (s.mutex) ; Acquire (s.mutex) ;
if (--s.value < 0) { if (++s.value <= 0)
Release (s.mutex) ; Release (s.delay) ;
Acquire (s.delay) ; else
} Release (s.mutex) ;
Release (s.mutex) ; }

}

The idea is not to release s.mutex and turn it over
individually to the waiting process

P and V are executing in locksteps

Kearn’s Solution (1988)

P(s) { Vis) {

Acquire (s.mutex) ; Acquire (s.mutex) ;

if (--s.value < 0) { if (++s.value <= 0) {
Release (s.mutex) ; s .wakecount++;
Acquire (s.delay) ; Release (s.delay) ;
Acquire (s.mutex) ; }
if (--s.wakecount > 0) Release (s.mutex) ;

Release (s.delay) ; }

}

Release (s.mutex) ;

}

Two Release(s.delay) calls are also possible

Hemmendinger’s Correction (1989)

P(s) { Vi(s) {

Acquire (s.mutex) ; Acquire (s.mutex) ;

if (--s.value < 0) { if (++s.value <= 0) {
Release (s.mutex) ; s .wakecount++;
Acquire (s.delay) ; 1f (s.wakecount == 1)
Acquire (s.mutex) ; Release (s.delay) ;
if (--s.wakecount > 0) }

Release (s.delay) ; Release (s.mutex) ;

} }

Release (s.mutex) ;

}

Correct but a complex solution

Hsieh’s Solution (1989)

P(s) { Vis) {
Acquire (s.delay) ; Acquire (s.mutex) ;
Acquire (s.mutex) ; if (++s.value == 1)
if (--s.wvalue > 0) Release (s.delay) ;
Release (s.delay) ; Release (s.mutex) ;
Release (s.mutex) ; }

}

Use Acquire(s.delay) to block processes
Correct but still a constrained implementation

Dining Philosophers

Things to observe:

sEach: need 2 forks to eat *A fork can only be used by

one at a time
*5 philosophers: 10 forks

5 forks: 2 can eat concurrently *No deadlock, please

*No starving, please

Mutex on whole table: P(mutex); | T »Concurrent eating, please

s(i): One

semaphore per fork 1 can eat at a time eat;
to be used in V(mutex);
mutex style P-V

Deadlock possible P(s(i+1)):

eat;
) = 1 initi V(s(i+D));
S(i) = 1 initially \
V(s(1));

Get L; Get R if free else Put L;
Starvation possible

Dining Philosophers

While (1) {
<think>
ENTRY;

<eat>

*Entry: If L and R is not eating | can

*Exit: If L (R) wants to eat and L.L (R.R) is not eating
| start him eating

One semaphore per

To avoid starvation they could look after each other: Used in signal style

S state

philosopher

*Thinking
Eating
*Want

S(i)=0 initiauyﬁ
P(mutex);

state(i):=Want;

if (state(i-1) '=Eating AND state(i+1) != Eating)

{/*Safe to eat*/
state(i):=Eating;
V(s(1)); /*Because */ }

V(mutex);
P(s(i)); /*Init was O!! I or neighbor must say V(i) to myself!*/

EXIT ——0
h

Trouble: starvation pattern possible:
2&4 at table, 1&3 hungry

2 gets up, 1 sits down

4 gets up, 3 sits down

3 gets up, 4 sits down

1 gets up, 2 sits down

Ad infinitum => Phil 0 will starve

P(mutex);
state(i):=Thinking;
if (state(i-1)=Want AND state(i-2) !=Eating)
{
state(i-1):=Eating;
V(s(i-1)); /*Start Left neighbor*/
}
/*Analogue for Right neighbor*/
V(mutex);

Last solution has a problem

Trouble in Tanenbaums solution:
starvation pattern possible:

2&4 at table, 1&3 hungry q
2 gets up, 1 sits down 4

4 gets up, 3 sits down
3 gets up, 4 sits down
1 gets up, 2 sits down 3 .

Ad infinitum => Phil 0 will starve

Dining Philosophers

Can we in a simple way do better
than this one?

S

S(i) = 1 initially

*Deadlock possible P(s(i+1)):
eat;
V(s(i+1));
V(s();

*Non-symmetric solution. Still
quite elegant

*Remove the danger of
circular waiting (deadlock)

*T1-T4: Get L; Get R;
*T5: Get R; Get L;

T, Ty, Tg, Ty

P(s(i)):
P(s(i+1));
<eat>
V(s(i+1));
V(s(1));

Ts

P(s(1));
P(s(5));
<eat>
V(s(5));
V(s((1));

Some Links

o Wikipedia:
« Alan B. Downey: The Little Book of Semaphores

o Jouni Leppajarvi:

http://en.wikipedia.org/wiki/Semaphore_(programming)
http://greenteapress.com/semaphores/LittleBookOfSemaphores.pdf
http://youtu.be/RaEUw107dpg
http://www.enseignement.polytechnique.fr/informatique/INF431/X09-2010-2011/AmphiTHC/SynchronizationPrimitives.pdf

	Semaphores
	Slide Number 2
	Slide Number 3
	Protecting a Shared Variable
	Issues
	Block/unblock syscalls
	Implementing Block and Unblock
	Two Kinds of Synchronization
	Think about ...
	Semaphores (Dijkstra, 1965)
	An aside on Dijkstra
	Semaphores can be used for …
	Examples of classic synchronization problems
	Semaphores w/Busy Wait
	The Structure of a Blocking Semaphore Implementation
	Using Semaphores
	Simple to debug?
	Semaphores w/Busy Wait
	Rendezvous between two threads
	Bounded Buffer using Semaphores
	Semaphores w/Busy Wait
	Hard life…
	Implementing Semaphores w/mutex
	Hemmendinger’s solution (1988)
	Kearn’s Solution (1988)
	Hemmendinger’s Correction (1989)
	Hsieh’s Solution (1989)
	Dining Philosophers
	Dining Philosophers
	Last solution has a problem
	Dining Philosophers
	Some Links

